Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker

During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy spec...

[1]  S. Anisimov,et al.  Molecular-dynamics simulation of evaporation of a liquid , 1997 .

[2]  A. Aubreton,et al.  Transport properties in non-equilibrium argon, copper and argon copper thermal plasmas , 2003 .

[3]  Michael Keidar,et al.  Vaporization of heated materials into discharge plasmas , 2001 .

[4]  L. Garrigues,et al.  Expanding sheath in a bounded plasma in the context of the post-arc phase of a vacuum arc , 2008 .

[5]  Nanbu,et al.  Theory of collision algorithms for gases and plasmas based on the boltzmann equation and the landau-fokker-planck equation , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  A. Wolter,et al.  Sputtering Yield Measurements with Low‐Energy Metal Ion Beams , 1969 .

[7]  André Anders,et al.  Handbook of plasma immersion ion implantation and deposition , 2004 .

[8]  E. Dullni,et al.  Dielectric Recovery of Vacuum Arcs after Strong Anode Spot Activity , 1987, IEEE Transactions on Plasma Science.

[9]  M. Lieberman Spherical shell model of an asymmetric rf discharge , 1989 .

[10]  Pierre Sarrailh Modélisation et simulation de la phase post-arc d'un disjoncteur sous vide , 2008 .

[11]  G. A. Farrall,et al.  Vacuum arc recovery phenomena , 1964 .

[12]  F. E. Marble,et al.  Kinetic Theory of Transient Condensation and Evaporation at a Plane Surface , 1971 .

[13]  Gerjan Hagelaar,et al.  How to normalize Maxwell-Boltzmann electrons in transient plasma models , 2007, J. Comput. Phys..

[14]  J. R. Pierce,et al.  Scientific foundations of vacuum technique , 1949 .

[15]  H. Urbassek,et al.  Monte Carlo study of Knudsen layers in evaporation from elemental and binary media , 1993 .

[16]  C. Shelton,et al.  Monte Carlo modeling of YBCO vapor deposition , 2001 .

[17]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[18]  H. Schellekens,et al.  Contact temperature and erosion in high-current diffuse vacuum arcs on axial magnetic field contacts , 2001 .

[19]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[20]  A. Catherinot,et al.  Monte Carlo simulation of the laser-induced plasma plume expansion under vacuum: Comparison with experiments , 1998 .

[21]  I. Langmuir THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. , 1918 .

[22]  A. Bogaerts,et al.  Collisional-radiative model for the sputtered copper atoms and ions in a direct current argon glow discharge , 1998 .

[23]  S. Kawamoto,et al.  Particle-in-cell plus direct simulation Monte Carlo (PIC-DSMC) approach for self-consistent plasma-gas simulations , 1999 .

[24]  Joseph A. Kunc,et al.  Analytical ionization cross sections for atomic collisions , 1991 .