Quantum digital signature in a network

We propose a quantum digital signature in a network consisting of one signer, multiple verifiers, and a trusted center (TC). The protocol guarantees that messages and signed messages are not counterfeited, and it authenticates the source of the messages. In addition, a signer (or a verifier) cannot, at a later time, deny having signed (received) the message. Theoretically, our quantum digital signature guarantees the security through quantum mechanics.

[1]  V. Scarani,et al.  Security of two quantum cryptography protocols using the same four qubit states (18 pages) , 2005, quant-ph/0505035.

[2]  Ke-Jia Zhang,et al.  Security Weaknesses in Arbitrated Quantum Signature Protocols , 2014 .

[3]  Hwayean Lee,et al.  Arbitrated quantum signature scheme with message recovery , 2004 .

[4]  M. Luo,et al.  Quantum Public-Key Cryptosystem , 2012 .

[5]  Wei Cui,et al.  Finite-key analysis for measurement-device-independent quantum key distribution , 2013, Nature Communications.

[6]  Zheng Zhou,et al.  Arbitrated quantum signature with an untrusted arbitrator , 2011 .

[7]  LI Chun-Yan,et al.  Efficient quantum secure communication with a publicly known key , 2008 .

[8]  P. J. Clarke,et al.  Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light , 2012, Nature communications.

[9]  C. Hong,et al.  Quantum Signature Scheme Using a Single Qubit Rotation Operator , 2015 .

[10]  Feihu Xu,et al.  Concise security bounds for practical decoy-state quantum key distribution , 2013, 1311.7129.

[11]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[12]  Behrouz A. Forouzan,et al.  Cryptography and network security , 1998 .

[13]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[14]  R. Amiri,et al.  Secure quantum signatures using insecure quantum channels , 2015, 1507.02975.

[15]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[16]  Qin Li,et al.  Arbitrated quantum signature scheme using Bell states , 2009 .

[17]  Elham Kashefi,et al.  Statistical Zero Knowledge and quantum one-way functions , 2005, Theor. Comput. Sci..

[18]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[19]  Jongin Lim,et al.  Quantum signature scheme based on a quantum search algorithm , 2014 .

[20]  P. J. Clarke,et al.  Realization of quantum digital signatures without the requirement of quantum memory. , 2013, Physical review letters.

[21]  Mladen Pavičić In quantum direct communication an undetectable eavesdropper can always tell Ψ from Φ Bell states in the message mode , 2013 .

[22]  Antoni Wójcik Eavesdropping on the "ping-pong" quantum communication protocol. , 2003, Physical review letters.

[23]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[24]  N. Lutkenhaus,et al.  Comment on ``Arbitrated quantum-signature scheme'' , 2008, 0806.0854.

[25]  Guihua Zeng Reply to “Comment on ‘Arbitrated quantum-signature scheme’ ” , 2008 .

[26]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[27]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[28]  Minghui Zhang,et al.  Semiquantum secure direct communication using EPR pairs , 2017, Quantum Inf. Process..

[29]  Min-Sung Kang,et al.  Universal quantum encryption for quantum signature using the swap test , 2018, Quantum Inf. Process..

[30]  Lili Wang,et al.  Two-party quantum key agreement with four-qubit cluster states , 2014, Quantum Information Processing.

[31]  Daowen Qiu,et al.  Security analysis and improvements of arbitrated quantum signature schemes , 2010 .

[32]  Quan Zhang,et al.  Comment on: “Arbitrated quantum signature scheme with message recovery” [Phys. Lett. A 321 (2004) 295] , 2005 .

[33]  M. Luo,et al.  Quantum Signature Scheme with Weak Arbitrator , 2012 .

[34]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[35]  Unextendible product bases and extremal density matrices with positive partial transpose , 2011, 1104.1318.

[36]  Adam D. Smith,et al.  Authentication of quantum messages , 2001, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[37]  Birgit Pfitzmann,et al.  Sorting out signature schemes , 1993, CCS '93.

[38]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[39]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[40]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .