Holder estimates for solutions of integra-differential equations like the fractional laplace

We provide a purely analytical proof of Holder continuity for harmonic functions with respect to a class of integro-differential equations like the ones associated with purely jump processes. The assumptions on the operator are more flexible than in previous works. Our assumptions include the case of an operator with variable order, without any continuity assumption in that order.

[1]  J. Moser A Harnack inequality for parabolic di2erential equations , 1964 .

[2]  Olivier Alvarez,et al.  Viscosity solutions of nonlinear integro-differential equations , 1996 .

[3]  Anna Lisa Amadori,et al.  Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach , 2003, Differential and Integral Equations.

[4]  Sayah Awatif,et al.  Equqtions D'Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels , 2007 .

[5]  R. Bass,et al.  Hölder Continuity of Harmonic Functions with Respect to Operators of Variable Order , 2005 .

[6]  R. Bass,et al.  Harnack inequalities for non-local operators of variable order , 2004 .

[7]  G. Barles,et al.  Backward stochastic differential equations and integral-partial differential equations , 1997 .

[8]  Huy En Pham Optimal Stopping of Controlled Jump Diiusion Processes: a Viscosity Solution Approach , 1998 .

[9]  L. Caffarelli,et al.  Fully Nonlinear Elliptic Equations , 1995 .

[10]  R. Song,et al.  Harnack inequality for some classes of Markov processes , 2004 .

[11]  R. Bass,et al.  Harnack Inequalities for Jump Processes , 2002 .

[12]  E. M. Landis,et al.  Second Order Equations of Elliptic and Parabolic Type , 1997 .

[13]  Sayah Awatif Equqtions D'Hamilton-Jacobi Du Premier Ordre Avec Termes Intégro-Différentiels: Partie II: Unicité Des Solutions De Viscosité , 1991 .

[14]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .