Flexible nonlinear contextual classification

We present a framework for flexible nonlinear contextual image classification. The framework integrates classical and recent models for image classification, ranging from a multivariate Gaussian classifier, to MLP neural nets, classification trees and recent regression models based on general additive models, and combines them with a Markov random field for spatial context. The effect of using the different nonlinear discriminant functions is compared with the effect of using an MRF model for spatial context. In general, the use of an MRF model results in larger improvements in classification accuracy than using different nonlinear discriminant functions, but the combination of them can give large improvements.

[1]  R. Palmer,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[2]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[3]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[4]  Marvin Minsky,et al.  Perceptrons: An Introduction to Computational Geometry , 1969 .

[5]  Brian D. Ripley,et al.  Flexible Non-linear Approaches to Classification , 1994 .

[6]  Anne H. Schistad Solberg Contextual data fusion applied to forest map revision , 1999, IEEE Trans. Geosci. Remote. Sens..

[7]  Anil K. Jain,et al.  Texture fusion and feature selection applied to SAR imagery , 1997, IEEE Trans. Geosci. Remote. Sens..

[8]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[9]  Peter Arnold van der Helm,et al.  Avoiding explosive search in automatic selection of simplest pattern codes , 1986, Pattern Recognit..

[10]  Anil K. Jain,et al.  Random field models in image analysis , 1989 .

[11]  R. Tibshirani,et al.  Flexible Discriminant Analysis by Optimal Scoring , 1994 .

[12]  Harry Wechsler,et al.  From Statistics to Neural Networks , 1994, NATO ASI Series.

[13]  Jerome H. Friedman Multivariate adaptive regression splines (with discussion) , 1991 .

[14]  Azriel Rosenfeld,et al.  Iterative methods in image analysis , 1978, Pattern Recognit..

[15]  John Haslett,et al.  Maximum likelihood discriminant analysis on the plane using a Markovian model of spatial context , 1985, Pattern Recognit..

[16]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  David G. Stork,et al.  Pattern Classification , 1973 .

[18]  Godfried T. Toussaint,et al.  The use of context in pattern recognition , 1978, Pattern Recognit..

[19]  William N. Venables,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[20]  J. Friedman Multivariate adaptive regression splines , 1990 .