Analysis of Cross-Classified Data

Suppose we have a population wherein associated with each member of the population is characteristic from the set of r 1 characteristics \(c_{11},\ldots,c_{1r_{1}}\) and a characteristic from the set of r 2 characteristics \(c_{21},\ldots,c_{2r_{2}}\). For example, if the population is that of all adults (age 18 or over) in the United States, then characteristic 1 might be sex, so that r 1 = 2, c 11 = male, and c 12 = female, and characteristic 2 might be age, so that r 2 = 100, and c 21 = 18, c 22 = 19, …, C 2,100 = 117. We can associate with each member of the population the pair (i i , i 2), where i 1, denotes the index of characteristic 1 and i 2 denotes the index of characteristic 2 of that member.

[1]  James E. Grizzle,et al.  The Teacher's Corner , 1967 .

[2]  L. A. Goodman The Multivariate Analysis of Qualitative Data: Interactions among Multiple Classifications , 1970 .

[3]  S. Haberman,et al.  Log‐Linear Fit for Contingency Tables , 1972 .

[4]  Stephen E. Fienberg,et al.  The analysis of cross-classified categorical data , 1980 .

[5]  D. J. Finney,et al.  Tables for Testing Significance In a 2 × 3 Contingency Table , 1963 .

[6]  A. Madansky Determinantal methods in latent class analysis , 1960 .

[7]  M. Bartlett Contingency Table Interactions , 1935 .

[8]  L. A. Goodman On Partitioning χ2 and Detecting Partial Association in Three‐Way Contingency Tables , 1969 .

[9]  F. Yates Contingency Tables Involving Small Numbers and the χ2 Test , 1934 .

[10]  B. Green,et al.  A general solution for the latent class model of latent structure analysis. , 1951, Psychometrika.

[11]  D. E. Lamphiear,et al.  CALCULATION OF CHI-SQUARE TO TEST THE NO THREE-FACTOR INTERACTION HYPOTHESIS , 1959 .

[12]  L. A. Goodman The Analysis of Systems of Qualitative Variables When Some of the Variables Are Unobservable. Part I-A Modified Latent Structure Approach , 1974, American Journal of Sociology.

[13]  Shelby J. Haberman,et al.  Tests for Independence in Two-Way Contingency Tables Based on Canonical Correlation and on Linear-By-Linear Interaction , 1981 .

[14]  W. H. Somermeyer,et al.  Principles of statistical classification , 1967 .

[15]  Zvi Gilula,et al.  Latent conditional independence in two‐way contingency tables: A diagnostic approach , 1983 .

[16]  R. A. Fisher,et al.  Statistical Tables for Biological, Agricultural and Medical Research , 1956 .

[17]  T. W. Anderson On estimation of parameters in latent structure analysis , 1954 .

[18]  David R. Cox,et al.  The continuity correction , 1970 .

[19]  Marvin A. Kastenbaum,et al.  On the Hypothesis of No "Interaction" In a Multi-way Contingency Table , 1956 .

[20]  R. Plackett A Note on Interactions in Contingency Tables , 1962 .

[21]  L. A. Goodman,et al.  The analysis of cross-classified data having ordered categories , 1985 .

[22]  J. Darroch Interactions in Multi‐Factor Contingency Tables , 1962 .

[23]  B. N. Lewis On the Analysis of Interaction in Multi‐Dimensional Contingency Tables , 1962 .

[24]  James E. Grizzle,et al.  Continuity Correction in the χ 2 -Test for 2 × 2 Tables , 1967 .

[25]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[26]  Jay Magidson,et al.  Analyzing qualitative/categorical data: Log-linear models and latent-structure analysis , 1978 .

[27]  Shelby J. Haberman,et al.  Log-Linear Models for Frequency Tables with Ordered Classifications , 1974 .

[28]  R. McHugh Efficient estimation and local identification in latent class analysis , 1956 .

[29]  Gerald J. Lieberman,et al.  Tables of the hypergeometric probability distribution , 1961 .

[30]  L. A. Goodman Simple Models for the Analysis of Association in Cross-Classifications Having Ordered Categories , 1979 .

[31]  E. Lehmann Testing Statistical Hypotheses , 1960 .

[32]  H. O. Lancaster,et al.  The derivation and partition of chi2 in certain discrete distributions. , 1949, Biometrika.

[33]  R. Plackett The continuity correction in 2×2 tables , 1964 .

[34]  W. Conover Some Reasons for Not Using the Yates Continuity Correction on 2×2 Contingency Tables , 1974 .

[35]  R. D. Boschloo Raised conditional level of significance for the 2 × 2‐table when testing the equality of two probabilities , 1970 .

[36]  H. O. Lancaster Complex Contingency Tables Treated by the Partition of χ2 , 1951 .

[37]  Richard B. McHugh Note on “efficient estimation and local identification in latent class analysis” , 1958 .

[38]  K. D. Tocher Extension of the Neyman-Pearson theory of tests to discontinuous variates. , 1950, Biometrika.

[39]  Paul F. Lazarsfeld,et al.  Latent Structure Analysis. , 1969 .

[40]  Leo A. Goodman,et al.  Simple Methods for Analyzing Three-Factor Interaction in Contingency Tables , 1964 .

[41]  H. Leon Harter,et al.  Order statistics and their use in testing and estimation , 1970 .