Selective Spatiotemporal Vulnerability of Central Nervous System Neurons to Pathologic TAR DNA-Binding Protein 43 in Aged Transgenic Mice.

[1]  R. Tapia,et al.  Excitatory and Inhibitory Neuronal Circuits in the Spinal Cord and Their Role in the Control of Motor Neuron Function and Degeneration. , 2018, ACS chemical neuroscience.

[2]  H. Fuchs,et al.  Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss , 2017, Acta Neuropathologica.

[3]  David A. Knowles,et al.  Therapeutic reduction of ataxin 2 extends lifespan and reduces pathology in TDP-43 mice , 2017, Nature.

[4]  A. Ittner SITE-SPECIFIC PHOSPHORYLATION OF TAU INHIBITS AMYLOID-β TOXICITY IN ALZHEIMER’S MICE , 2016, Alzheimer's & Dementia.

[5]  K. Young,et al.  Synapse Dysfunction of Layer V Pyramidal Neurons Precedes Neurodegeneration in a Mouse Model of TDP-43 Proteinopathies , 2016, Cerebral cortex.

[6]  G. Sobue,et al.  Exosome secretion is a key pathway for clearance of pathological TDP-43. , 2016, Brain : a journal of neurology.

[7]  M. Bellingham,et al.  Cortical synaptic and dendritic spine abnormalities in a presymptomatic TDP-43 model of amyotrophic lateral sclerosis , 2016, Scientific Reports.

[8]  A. Bongers,et al.  No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice , 2016, PloS one.

[9]  J. Hodges,et al.  The frontotemporal dementia-motor neuron disease continuum , 2016, The Lancet.

[10]  M. Horne,et al.  Enhancing survival motor neuron expression extends lifespan and attenuates neurodegeneration in mutant TDP-43 mice. , 2016, Human molecular genetics.

[11]  J. Trojanowski,et al.  Selective Motor Neuron Resistance and Recovery in a New Inducible Mouse Model of TDP-43 Proteinopathy , 2016, The Journal of Neuroscience.

[12]  M. Hernandez,et al.  Gait variability in people with neurological disorders: A systematic review and meta-analysis. , 2016, Human movement science.

[13]  Hu Li,et al.  The Inhibition of TDP-43 Mitochondrial Localization Blocks Its Neuronal Toxicity , 2016, Nature Medicine.

[14]  G. Allali,et al.  Gait Performance and Use of Mental Imagery as a Measure of Disease Progression in Amyotrophic Lateral Sclerosis , 2016, European Neurology.

[15]  Qiang Ye,et al.  A novel approach for analysis of altered gait variability in amyotrophic lateral sclerosis , 2015, Medical & Biological Engineering & Computing.

[16]  J. Trojanowski,et al.  An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice. , 2015, Human molecular genetics.

[17]  J. Hodges,et al.  Early‐onset axonal pathology in a novel P301S‐Tau transgenic mouse model of frontotemporal lobar degeneration , 2015, Neuropathology and applied neurobiology.

[18]  G. Halliday,et al.  Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS , 2015, Acta Neuropathologica.

[19]  J. Trojanowski,et al.  Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43 , 2015, Acta Neuropathologica.

[20]  A. Calas,et al.  Early ALS-type gait abnormalities in AMP-dependent protein kinase-deficient mice suggest a role for this metabolic sensor in early stages of the disease , 2015, Metabolic Brain Disease.

[21]  L. Ittner,et al.  Genome Editing in Mice Using CRISPR/Cas9: Achievements and Prospects , 2015 .

[22]  V. Kostic,et al.  Gait in amyotrophic lateral sclerosis: Is gait pattern differently affected in spinal and bulbar onset of the disease during dual task walking? , 2014, Amyotrophic lateral sclerosis & frontotemporal degeneration.

[23]  P. Callaerts,et al.  TDP-43-mediated neurodegeneration: towards a loss-of-function hypothesis? , 2014, Trends in molecular medicine.

[24]  L. Petrucelli,et al.  Divergent Phenotypes in Mutant TDP-43 Transgenic Mice Highlight Potential Confounds in TDP-43 Transgenic Modeling , 2014, PloS one.

[25]  C. Jack,et al.  Staging TDP-43 pathology in Alzheimer’s disease , 2014, Acta Neuropathologica.

[26]  Inducible, tightly regulated and non-leaky neuronal gene expression in mice , 2014, Transgenic Research.

[27]  Andrew L. Janke,et al.  A segmentation protocol and MRI atlas of the C57BL/6J mouse neocortex , 2013, NeuroImage.

[28]  E. Roberson Mouse models of frontotemporal dementia , 2012, Annals of neurology.

[29]  K. Toyka,et al.  Muscle specific kinase autoantibodies cause synaptic failure through progressive wastage of postsynaptic acetylcholine receptors , 2012, Experimental Neurology.

[30]  L. Petrucelli,et al.  Neuronal sensitivity to TDP-43 overexpression is dependent on timing of induction , 2012, Acta Neuropathologica.

[31]  L. Petrucelli,et al.  Expression of mutant TDP-43 induces neuronal dysfunction in transgenic mice , 2011, Molecular Neurodegeneration.

[32]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[33]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[34]  Xavier Navarro,et al.  Evolution of gait abnormalities in SOD1G93A transgenic mice , 2011, Brain Research.

[35]  J. Trojanowski,et al.  Dysregulation of the ALS-associated gene TDP-43 leads to neuronal death and degeneration in mice. , 2011, The Journal of clinical investigation.

[36]  S. Pereson,et al.  TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration , 2010, Proceedings of the National Academy of Sciences.

[37]  N. Cairns,et al.  TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration , 2009, Proceedings of the National Academy of Sciences.

[38]  J. Trojanowski,et al.  Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies* , 2009, Journal of Biological Chemistry.

[39]  J. Trojanowski,et al.  Disturbance of Nuclear and Cytoplasmic TAR DNA-binding Protein (TDP-43) Induces Disease-like Redistribution, Sequestration, and Aggregate Formation* , 2008, Journal of Biological Chemistry.

[40]  B. McConkey,et al.  TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis , 2008, Nature Genetics.

[41]  Murray Grossman,et al.  TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis , 2008, The Lancet Neurology.

[42]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[43]  Francisco E. Baralle,et al.  Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator ofCFTR Exon 9* , 2001, The Journal of Biological Chemistry.