A Finite Element Method for the Surface Stokes Problem

We consider a Stokes problem posed on a 2D surface embedded in a 3D domain. The equations describe an equilibrium, area-preserving tangential flow of a viscous surface fluid and serve as a model problem in the dynamics of material interfaces. In this paper, we develop and analyze a Trace finite element method (TraceFEM) for such a surface Stokes problem. TraceFEM relies on finite element spaces defined on a fixed, surface-independent background mesh which consists of shape-regular tetrahedra. Thus, there is no need for surface parametrization or surface fitting with the mesh. The TraceFEM treated here is based on $P_1$ bulk finite elements for both the velocity and the pressure. In order to enforce the velocity vector field to be tangential to the surface we introduce a penalty term. The method is straightforward to implement and has an $O(h^2)$ geometric consistency error, which is of the same order as the approximation error due to the $P_1$--$P_1$ pair for velocity and pressure. We prove stability and optimal order discretization error bounds in the surface $H^1$ and $L^2$ norms. A series of numerical experiments is presented to illustrate certain features of the proposed TraceFEM.

[1]  J. Marsden,et al.  Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .

[2]  M. Olshanskii,et al.  A Stabilized Trace Finite Element Method for Partial Differential Equations on Evolving Surfaces , 2017, SIAM J. Numer. Anal..

[3]  I. Nitschke,et al.  A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.

[4]  Edriss S. Titi,et al.  The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom , 1999 .

[5]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[6]  Maxim A. Olshanskii,et al.  An Adaptive Surface Finite Element Method Based on Volume Meshes , 2012, SIAM J. Numer. Anal..

[7]  Morton E. Gurtin,et al.  A continuum theory of elastic material surfaces , 1975 .

[8]  Maxim A. Olshanskii,et al.  An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..

[9]  Peter Hansbo,et al.  Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.

[10]  Richard E. Mortensen,et al.  Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..

[11]  Christoph Lehrenfeld,et al.  Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces , 2016, SIAM J. Numer. Anal..

[12]  L. Scriven,et al.  Dynamics of a fluid interface Equation of motion for Newtonian surface fluids , 1960 .

[13]  Marius Mitrea,et al.  Navier-Stokes equations on Lipschitz domains in Riemannian manifolds , 2001 .

[14]  Howard Brenner,et al.  Interfacial transport processes and rheology , 1991 .

[15]  Marc Arnaudon,et al.  Lagrangian Navier–Stokes diffusions on manifolds: Variational principle and stability , 2010 .

[16]  Thomas-Peter Fries,et al.  Higher‐order surface FEM for incompressible Navier‐Stokes flows on manifolds , 2017, ArXiv.

[17]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[18]  Yoshikazu Giga,et al.  Energetic variational approaches for incompressible fluid systems on an evolving surface , 2016 .

[19]  Arnold Reusken,et al.  Analysis of trace finite element methods for surface partial differential equations , 2015 .

[20]  Maxim A. Olshanskii,et al.  Incompressible fluid problems on embedded surfaces: Modeling and variational formulations , 2017, Interfaces and Free Boundaries.

[21]  Marino Arroyo,et al.  Relaxation dynamics of fluid membranes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Antonio DeSimone,et al.  Curved fluid membranes behave laterally as effective viscoelastic media , 2013 .

[23]  Axel Voigt,et al.  Solving the incompressible surface Navier-Stokes equation by surface finite elements , 2017, 1709.02803.

[24]  Michael E. Taylor,et al.  Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations , 1992 .

[25]  Maxim A. Olshanskii,et al.  Numerical Analysis and Scientific Computing Preprint Seria Inf-sup stability of geometrically unfitted Stokes finite elements , 2016 .

[26]  Michael J. Holst,et al.  Geometric Variational Crimes: Hilbert Complexes, Finite Element Exterior Calculus, and Problems on Hypersurfaces , 2010, Foundations of Computational Mathematics.

[27]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[28]  Maxim A. Olshanskii,et al.  A Trace Finite Element Method for Vector-Laplacians on Surfaces , 2017, SIAM J. Numer. Anal..

[29]  Axel Voigt,et al.  The Interplay of Curvature and Vortices in Flow on Curved Surfaces , 2014, Multiscale Model. Simul..

[30]  Peter Hansbo,et al.  A stabilized finite element method for the Darcy problem on surfaces , 2016 .

[31]  Arnold Reusken,et al.  Numerical simulation of incompressible two‐phase flows with a Boussinesq–Scriven interface stress tensor , 2013 .

[32]  Peter Hansbo,et al.  Analysis of finite element methods for vector Laplacians on surfaces , 2016, IMA Journal of Numerical Analysis.

[33]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[34]  Maxim A. Olshanskii,et al.  Trace Finite Element Methods for PDEs on Surfaces , 2016, 1612.00054.

[35]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[36]  Maxim A. Olshanskii,et al.  An adaptive octree finite element method for PDEs posed on surfaces , 2014, 1408.3891.

[37]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.