A Finite Element Method for the Surface Stokes Problem
暂无分享,去创建一个
Maxim A. Olshanskii | Annalisa Quaini | Arnold Reusken | Vladimir Yushutin | A. Reusken | A. Quaini | M. Olshanskii | V. Yushutin | Arnold Reusken
[1] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[2] M. Olshanskii,et al. A Stabilized Trace Finite Element Method for Partial Differential Equations on Evolving Surfaces , 2017, SIAM J. Numer. Anal..
[3] I. Nitschke,et al. A finite element approach to incompressible two-phase flow on manifolds , 2012, Journal of Fluid Mechanics.
[4] Edriss S. Titi,et al. The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom , 1999 .
[5] Maxim A. Olshanskii,et al. A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.
[6] Maxim A. Olshanskii,et al. An Adaptive Surface Finite Element Method Based on Volume Meshes , 2012, SIAM J. Numer. Anal..
[7] Morton E. Gurtin,et al. A continuum theory of elastic material surfaces , 1975 .
[8] Maxim A. Olshanskii,et al. An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..
[9] Peter Hansbo,et al. Cut finite element methods for partial differential equations on embedded manifolds of arbitrary codimensions , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.
[10] Richard E. Mortensen,et al. Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..
[11] Christoph Lehrenfeld,et al. Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces , 2016, SIAM J. Numer. Anal..
[12] L. Scriven,et al. Dynamics of a fluid interface Equation of motion for Newtonian surface fluids , 1960 .
[13] Marius Mitrea,et al. Navier-Stokes equations on Lipschitz domains in Riemannian manifolds , 2001 .
[14] Howard Brenner,et al. Interfacial transport processes and rheology , 1991 .
[15] Marc Arnaudon,et al. Lagrangian Navier–Stokes diffusions on manifolds: Variational principle and stability , 2010 .
[16] Thomas-Peter Fries,et al. Higher‐order surface FEM for incompressible Navier‐Stokes flows on manifolds , 2017, ArXiv.
[17] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[18] Yoshikazu Giga,et al. Energetic variational approaches for incompressible fluid systems on an evolving surface , 2016 .
[19] Arnold Reusken,et al. Analysis of trace finite element methods for surface partial differential equations , 2015 .
[20] Maxim A. Olshanskii,et al. Incompressible fluid problems on embedded surfaces: Modeling and variational formulations , 2017, Interfaces and Free Boundaries.
[21] Marino Arroyo,et al. Relaxation dynamics of fluid membranes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[22] Antonio DeSimone,et al. Curved fluid membranes behave laterally as effective viscoelastic media , 2013 .
[23] Axel Voigt,et al. Solving the incompressible surface Navier-Stokes equation by surface finite elements , 2017, 1709.02803.
[24] Michael E. Taylor,et al. Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations , 1992 .
[25] Maxim A. Olshanskii,et al. Numerical Analysis and Scientific Computing Preprint Seria Inf-sup stability of geometrically unfitted Stokes finite elements , 2016 .
[26] Michael J. Holst,et al. Geometric Variational Crimes: Hilbert Complexes, Finite Element Exterior Calculus, and Problems on Hypersurfaces , 2010, Foundations of Computational Mathematics.
[27] Maxim A. Olshanskii,et al. A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..
[28] Maxim A. Olshanskii,et al. A Trace Finite Element Method for Vector-Laplacians on Surfaces , 2017, SIAM J. Numer. Anal..
[29] Axel Voigt,et al. The Interplay of Curvature and Vortices in Flow on Curved Surfaces , 2014, Multiscale Model. Simul..
[30] Peter Hansbo,et al. A stabilized finite element method for the Darcy problem on surfaces , 2016 .
[31] Arnold Reusken,et al. Numerical simulation of incompressible two‐phase flows with a Boussinesq–Scriven interface stress tensor , 2013 .
[32] Peter Hansbo,et al. Analysis of finite element methods for vector Laplacians on surfaces , 2016, IMA Journal of Numerical Analysis.
[33] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[34] Maxim A. Olshanskii,et al. Trace Finite Element Methods for PDEs on Surfaces , 2016, 1612.00054.
[35] P. Hansbo,et al. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .
[36] Maxim A. Olshanskii,et al. An adaptive octree finite element method for PDEs posed on surfaces , 2014, 1408.3891.
[37] Charles M. Elliott,et al. Finite element methods for surface PDEs* , 2013, Acta Numerica.