Organohalide lead perovskites for photovoltaic applications

There are only few semiconducting materials that have been shaping the progress of third generation photovoltaic cells as much as perovskites. Although they are deceivingly simple in structure, the archetypal AMX3-type perovskites have built-in potential for complex and surprising discoveries. Since 2009, a small and somewhat exotic class of perovskites, which are quite different from the common rock-solid oxide perovskite, have turned over a new leaf in solar cell research. Highlighted as one of the major scientific breakthroughs of the year 2013, the power conversion efficiency of the title compound hybrid organic–inorganic perovskite has now exceeded 18%, making it competitive with thin-film PV technology. In this minireview, a brief history of perovskite materials for photovoltaic applications is reported, the current state-of-the-art is distilled and the basic working mechanisms have been discussed. By analyzing the attainable photocurrent and photovoltage, realizing perovskite solar cells with 20% efficiency for a single junction, and 30% for a tandem configuration on a c-Si solar cell would be realistic.

[1]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[2]  N. Kitazawa,et al.  Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals , 2002 .

[3]  M. Gorgoi,et al.  Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces. , 2014, The journal of physical chemistry letters.

[4]  Bo Qu,et al.  Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles , 2015 .

[5]  Aldo Di Carlo,et al.  High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer , 2014 .

[6]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[7]  David B Mitzi,et al.  Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. , 2005, Inorganic chemistry.

[8]  Ling-yi Huang,et al.  Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl 3 , CsSnBr 3 , and CsSnI 3 , 2013 .

[9]  H. Butt,et al.  Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells. , 2014, Nanoscale.

[10]  Kazunori Sato,et al.  Photoassisted water decomposition by ferroelectric lead zirconate titanate ceramics with anomalous photovoltaic effects , 1986 .

[11]  Tsutomu Miyasaka,et al.  Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[12]  H. Rotter,et al.  Kristallstrukturen und Phasentransformationen von Caesiumtrihalogenogermanaten(II) CsGeX3 (X = Cl, Br, I) , 1987 .

[13]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[14]  Yunlong Guo,et al.  Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer , 2014 .

[15]  Henk J. Bolink,et al.  Flexible high efficiency perovskite solar cells , 2014 .

[16]  Wei Chen,et al.  Sequential Deposition of CH3NH3PbI3 on Planar NiO Film for Efficient Planar Perovskite Solar Cells , 2014 .

[17]  Koji Yamada,et al.  Structure and Bonding of Two Modifications of CsSnI3 by Means of Powder X-Ray Diffraction, 127I NQR, and DTA , 1989 .

[18]  W. Knoll,et al.  Rapid and Highly Efficient Preparation of Water-Soluble Luminescent Quantum Dots via Encapsulation by Thermo- and Redox-Responsive Hydrogels , 2008 .

[19]  L. Etgar,et al.  Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[20]  K. P. Ong,et al.  Mechanical Origin of the Structural Phase Transition in Methylammonium Lead Iodide CH3NH3PbI3. , 2015, The journal of physical chemistry letters.

[21]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[22]  G. Murtaza,et al.  Physical Properties of CsSnM3(M = Cl, Br, I): A First Principle Study , 2013 .

[23]  Yang Yang,et al.  Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process , 2015 .

[24]  N. Park,et al.  Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3 , 2012, Nanoscale Research Letters.

[25]  Benjamin Foley,et al.  Temperature dependent energy levels of methylammonium lead iodide perovskite , 2015 .

[26]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[27]  A. Salau Fundamental absorption edge in PbI2:KI alloys , 1980 .

[28]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[29]  R. Marchand,et al.  Typical features of nitrogen in nitride-type compounds , 2001 .

[30]  D. Weber CH3NH3SnBrxI3-x (x = 0-3), ein Sn(II)-System mit kubischer Perowskitstruktur / CH3NH3SnBrxI3-x(x = 0-3), a Sn(II)-System with Cubic Perovskite Structure , 1978 .

[31]  Qi Chen,et al.  The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. , 2015, Physical chemistry chemical physics : PCCP.

[32]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[33]  Peng Gao,et al.  Effect of Annealing Temperature on Film Morphology of Organic–Inorganic Hybrid Pervoskite Solid‐State Solar Cells , 2014 .

[34]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[35]  Teng Zhang,et al.  Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites , 2014 .

[36]  V. Mihailetchi,et al.  Space-charge limited photocurrent. , 2005, Physical review letters.

[37]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[38]  H. Han,et al.  The size effect of TiO2 nanoparticles on a printable mesoscopic perovskite solar cell , 2015 .

[39]  M. Topič,et al.  Optimal I-V Curve Scan Time of Solar Cells and Modules in Light of Irradiance Level , 2012 .

[40]  Teruya Ishihara,et al.  Optical properties of PbI-based perovskite structures , 1994 .

[41]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[42]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[43]  J. J. Wang,et al.  Synthesis and characterization of CsSnI3 thin films , 2010 .

[44]  David B. Mitzi,et al.  Thin-Film Deposition of Organic−Inorganic Hybrid Materials , 2001 .

[45]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[46]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[47]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[48]  Juan Bisquert,et al.  Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells , 2003 .

[49]  He Yan,et al.  Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. , 2014, Journal of the American Chemical Society.

[50]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[51]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[52]  M. Alexe,et al.  Tip-enhanced photovoltaic effects in bismuth ferrite , 2011 .

[53]  Koji Yamada,et al.  Tunable Perovskite Semiconductor CH3NH3SnX3 (X: Cl, Br, or I) Characterized by X-ray and DTA , 2011 .

[54]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[55]  Nam-Gyu Park,et al.  Perovskite solar cells: an emerging photovoltaic technology , 2015 .

[56]  Yongli Gao,et al.  Qualifying composition dependent p and n self-doping in CH3NH3PbI3 , 2014 .

[57]  Yun‐Hi Kim,et al.  A diketopyrrolopyrrole-containing hole transporting conjugated polymer for use in efficient stable organic–inorganic hybrid solar cells based on a perovskite , 2014 .

[58]  Jieshan Qiu,et al.  High performance hybrid solar cells sensitized by organolead halide perovskites , 2013 .

[59]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[60]  Ming He,et al.  High efficiency perovskite solar cells: from complex nanostructure to planar heterojunction , 2014 .

[61]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[62]  David B. Mitzi,et al.  Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb) , 1996 .

[63]  N. Davidson,et al.  Mutations in M2 alter the selectivity of the mouse nicotinic acetylcholine receptor for organic and alkali metal cations , 1992, The Journal of general physiology.

[64]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[65]  M. Grätzel The light and shade of perovskite solar cells. , 2014, Nature materials.

[66]  Q. Gong,et al.  A highly efficient mesoscopic solar cell based on CH₃NH₃PbI(3-x)Cl(x) fabricated via sequential solution deposition. , 2014, Chemical communications.

[67]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[68]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[69]  Takenari Goto,et al.  Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4 , 1989 .

[70]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[71]  J. Durrant,et al.  Performance and Stability of Lead Perovskite/TiO2, Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns , 2014, Advanced materials.

[72]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[73]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[74]  J. Y. Han,et al.  High-performance crosslinked colloidal quantum-dot light-emitting diodes , 2009 .

[75]  Qi Chen,et al.  Integrated perovskite/bulk-heterojunction toward efficient solar cells. , 2015, Nano letters.

[76]  David B. Mitzi,et al.  Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique , 1999 .

[77]  P. Woodward,et al.  Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family , 2003 .

[78]  Huawei Zhou,et al.  Hole-Conductor-Free, Metal-Electrode-Free TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on a Low-Temperature Carbon Electrode. , 2014, The journal of physical chemistry letters.

[79]  Kai Zhu,et al.  Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length. , 2014, The journal of physical chemistry letters.

[80]  Hiroshi Segawa,et al.  Small Photocarrier Effective Masses Featuring Ambipolar Transport in Methylammonium Lead Iodide Perovskite: A Density Functional Analysis. , 2013, The journal of physical chemistry letters.

[81]  Yong Qiu,et al.  Study on the stability of CH3NH3PbI3films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells , 2014 .

[82]  Nripan Mathews,et al.  Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. , 2014, ACS nano.

[83]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[84]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[85]  Andrew R. Kitahara,et al.  Defect density and dielectric constant in perovskite solar cells , 2014 .

[86]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[87]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[88]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[89]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[90]  D. Trots,et al.  High-temperature structural evolution of caesium and rubidium triiodoplumbates , 2008 .

[91]  Wei Lin Leong,et al.  A swivel-cruciform thiophene based hole-transporting material for efficient perovskite solar cells , 2014 .

[92]  A. Nozik Nanophotonics: Making the most of photons. , 2009, Nature nanotechnology.

[93]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[94]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[95]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[96]  Heng Li,et al.  Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[97]  Yanhong Luo,et al.  Hole-conductor-free perovskite organic lead iodide heterojunction thin-film solar cells: High efficiency and junction property , 2014 .

[98]  Yossi Rosenwaks,et al.  Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). , 2014, Nano letters.

[99]  Lydia Helena Wong,et al.  TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode , 2015 .

[100]  M. Johnston,et al.  Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx , 2014 .

[101]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[102]  Arie Zaban,et al.  Extremely Slow Photoconductivity Response of CH3NH3PbI3 Perovskites Suggesting Structural Changes under Working Conditions. , 2014, The journal of physical chemistry letters.

[103]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[104]  Francisco Fabregat-Santiago,et al.  Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[105]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[106]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[107]  D. Weber CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur / CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure , 1978 .

[108]  Jinsong Huang,et al.  Solvent Annealing of Perovskite‐Induced Crystal Growth for Photovoltaic‐Device Efficiency Enhancement , 2014, Advanced materials.

[109]  A. H. Nethercot Prediction of Fermi Energies and Photoelectric Thresholds Based on Electronegativity Concepts , 1974 .

[110]  David Cahen,et al.  Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. , 2014, The journal of physical chemistry letters.

[111]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[112]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[113]  T. Matsui,et al.  Structural phase transitions of the polymorphs of CsSnI3 by means of rietveld analysis of the X-ray diffraction. , 1991 .

[114]  David B. Mitzi,et al.  Design, Structure, and Optical Properties of Organic-Inorganic Perovskites Containing an Oligothiophene Chromophore. , 1999, Inorganic chemistry.

[115]  Albert Rose,et al.  Double Extraction of Uniformly Generated Electron‐Hole Pairs from Insulators with Noninjecting Contacts , 1971 .

[116]  M. Nazeeruddin,et al.  Efficient perovskite solar cells with 13.63 % efficiency based on planar triphenylamine hole conductors. , 2014, Chemistry.

[117]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[118]  Kangning Liang,et al.  Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique , 1998 .

[119]  Hiroshi Suga,et al.  Dielectric study of CH3NH3PbX3 (X = Cl, Br, I) , 1992 .

[120]  M. Kanatzidis,et al.  Controllable perovskite crystallization at a gas-solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. , 2014, Journal of the American Chemical Society.

[121]  Juan Bisquert,et al.  Mechanism of carrier accumulation in perovskite thin-absorber solar cells , 2013, Nature Communications.

[122]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[123]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[124]  L. Etgar,et al.  Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells , 2014 .

[125]  Yaming Yu,et al.  NH2CH═NH2PbI3: An Alternative Organolead Iodide Perovskite Sensitizer for Mesoscopic Solar Cells , 2014 .

[126]  Richard L. Harlow,et al.  Preparation and characterization of layered lead halide compounds , 1991 .

[127]  Oleksandr Voznyy,et al.  Materials processing routes to trap-free halide perovskites. , 2014, Nano letters.

[128]  M. Jansen,et al.  Inorganic yellow-red pigments without toxic metals , 2000, Nature.

[129]  M. Ikegami,et al.  Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media , 2012 .

[130]  G. Papavassiliou,et al.  Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems , 1995 .

[131]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[132]  P. Lund,et al.  Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[133]  Ian P. Swainson,et al.  Phase transitions in the perovskite methylammonium lead bromide, CH3ND3PbBr3 , 2003 .

[134]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[135]  Yaoguang Rong,et al.  Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode , 2013, Scientific Reports.

[136]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[137]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[138]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[139]  G. Cantele,et al.  Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides , 2008 .

[140]  Giuseppe Gigli,et al.  MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties , 2013 .

[141]  Yongcai Qiu,et al.  All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. , 2013, Nanoscale.

[142]  M. Schoijet Possibilities of new materials for solar photovoltaic cells , 1979 .

[143]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[144]  Wilhelm Warta,et al.  Solar cell efficiency tables (version 42) , 2013 .

[145]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[146]  M. Grätzel,et al.  A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. , 2014, Angewandte Chemie.

[147]  M. Akabas,et al.  5-HT3 receptor ion size selectivity is a property of the transmembrane channel, not the cytoplasmic vestibule portals , 2011, The Journal of general physiology.

[148]  Ming Cheng,et al.  Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. , 2014, ACS applied materials & interfaces.

[149]  Philip Schulz,et al.  Interface energetics in organo-metal halide perovskite-based photovoltaic cells , 2014 .

[150]  Miaoqiang Lyu,et al.  Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr(3-x)Cl(x) films. , 2014, Chemical communications.

[151]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[152]  Olga Malinkiewicz,et al.  Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. , 2014, Journal of the American Chemical Society.

[153]  R. Jeanloz,et al.  Synthesis and Equation of State of (Mg,Fe) SiO3 Perovskite to Over 100 Gigapascals , 1987, Science.

[154]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[155]  S. Zakeeruddin,et al.  Low band gap S,N-heteroacene-based oligothiophenes as hole-transporting and light absorbing materials for efficient perovskite-based solar cells , 2014 .

[156]  David Cahen,et al.  Photovoltaics: Perovskite cells roll forward , 2014 .

[157]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[158]  Erik M. J. Johansson,et al.  Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures , 2013 .

[159]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[160]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[161]  Chang Yoon,et al.  Linear Network Model of Gene Regulation for the Yeast Cell Cycle , 2004 .

[162]  A. Nozik Quantum dot solar cells , 2002 .

[163]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[164]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[165]  David J. Singh,et al.  Wide bandgap tunability in complex transition metal oxides by site-specific substitution , 2012, Nature Communications.

[166]  C. H. Park,et al.  First-Principles Study of the Structural and the Electronic Properties of the Lead-Halide-Based Inorganic-Organic perovskites (CH3NH3)PbX3 and CsPbX3 (X = Cl, Br, I) , 2004 .

[167]  J. Bisquert,et al.  Theory of Impedance and Capacitance Spectroscopy of Solar Cells with Dielectric Relaxation, Drift-Diffusion Transport, and Recombination , 2014 .

[168]  Uri Banin,et al.  Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods , 2003, Nature materials.

[169]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[170]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[171]  Linfeng Liu,et al.  Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CHNH2PbI3 , 2014 .

[172]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[173]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[174]  K. Asai,et al.  Systematic Studies on Chain Lengths, Halide Species, and Well Thicknesses for Lead Halide Layered Perovskite Thin Films , 2006 .

[175]  J. Ralston,et al.  The unusual surface chemistry of α-Al(2)O(3) (0001). , 2010, Physical chemistry chemical physics : PCCP.

[176]  Juan Bisquert,et al.  General working principles of CH3NH3PbX3 perovskite solar cells. , 2014, Nano letters.

[177]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[178]  I. Swainson,et al.  The ordered phase of methylammonium lead chloride CH3ND3PbCl3 , 2005 .

[179]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[180]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[181]  F. S. Chen,et al.  Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3 , 1969 .

[182]  Kiyoyuki Terakura,et al.  Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. , 2011, Dalton transactions.

[183]  Peng Gao,et al.  Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. , 2014, Nano letters.

[184]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[185]  Alain Goriely,et al.  Neutral color semitransparent microstructured perovskite solar cells. , 2014, ACS nano.

[186]  Zhibin Yang,et al.  Integrating perovskite solar cells into a flexible fiber. , 2014, Angewandte Chemie.

[187]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[188]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[189]  Mohammad Khaja Nazeeruddin,et al.  Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. , 2013, Journal of the American Chemical Society.

[190]  C. K. Møller Crystal Structure and Photoconductivity of Cæsium Plumbohalides , 1958 .

[191]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[192]  Ramamoorthy Ramesh,et al.  Photoconductivity in BiFeO3 thin films , 2008 .

[193]  M. Alexe,et al.  A photoferroelectric material is more than the sum of its parts. , 2012, Nature Materials.

[194]  Jun Lin,et al.  Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering , 2010 .

[195]  M. Shen,et al.  High-efficiency ferroelectric-film solar cells with an n-type Cu₂O cathode buffer layer. , 2012, Nano letters.

[196]  Henry J. Snaith,et al.  Advances in Liquid‐Electrolyte and Solid‐State Dye‐Sensitized Solar Cells , 2007 .

[197]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[198]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[199]  Nripan Mathews,et al.  Band-gap tuning of lead halide perovskites using a sequential deposition process , 2014 .

[200]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[201]  Jean-Pierre Wolf,et al.  Organometal halide perovskite solar cell materials rationalized: ultrafast charge generation, high and microsecond-long balanced mobilities, and slow recombination. , 2014, Journal of the American Chemical Society.

[202]  Jianbin Xu,et al.  High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. , 2015, Small.

[203]  Chang Su Shim,et al.  Highly stable and efficient solid-state solar cells based on methylammonium lead bromide (CH3NH3PbBr3) perovskite quantum dots , 2015 .

[204]  C. K. Møller A Phase Transition in Cæsium Plumbochloride , 1957 .

[205]  J. A. del Cueto,et al.  Striving for a standard protocol for preconditioning or stabilization of polycrystalline thin film photovoltaic modules , 2009, Optics + Photonics for Sustainable Energy.

[206]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[207]  E. Sargent,et al.  Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals , 2015, Science.

[208]  Ingo Riedel,et al.  Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices , 2004 .

[209]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[210]  Yao Sun,et al.  Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles. , 2013, Nano letters.

[211]  H. Snaith,et al.  The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. , 2014, The journal of physical chemistry letters.

[212]  Nripan Mathews,et al.  High efficiency electrospun TiO₂ nanofiber based hybrid organic-inorganic perovskite solar cell. , 2014, Nanoscale.

[213]  Juan Bisquert,et al.  Physical Chemical Principles of Photovoltaic Conversion with Nanoparticulate, Mesoporous Dye-Sensitized Solar Cells , 2004 .

[214]  Lioz Etgar,et al.  Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell , 2014 .

[215]  Kai Zhu,et al.  Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells , 2013 .

[216]  P. Mauersberger,et al.  Structure of caesium triiodostannate(II) , 1980 .

[217]  A. G. Chynoweth,et al.  Surface Space-Charge Layers in Barium Titanate , 1956 .

[218]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[219]  Fan Zheng,et al.  First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. , 2012, Physical review letters.

[220]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[221]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[222]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[223]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[224]  Yanhong Luo,et al.  An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells , 2014 .

[225]  Xueping Gao,et al.  Titanate Nanofiber Reactivity: Fabrication of MTiO3 (M = Ca, Sr, and Ba) Perovskite Oxides , 2009 .

[226]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[227]  Yung C. Liang,et al.  High efficient photovoltaics in nanoscaled ferroelectric thin films , 2008 .

[228]  F. Ménil,et al.  The role of the inductive effect in solid state chemistry: how the chemist can use it to modify both the structural and the physical properties of the materials , 1992 .

[229]  Teng Zhang,et al.  High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. , 2014, Angewandte Chemie.

[230]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[231]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[232]  A. Kahn,et al.  Photovoltaic efficiency limits and material disorder , 2012 .

[233]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[234]  Nripan Mathews,et al.  The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells , 2014 .

[235]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[236]  G. Clavier,et al.  Synthesis of New Perovskite Luminescent Nanoparticles in the Visible Range , 2009 .

[237]  M. Grätzel,et al.  Perovskite solar cells with 12.8% efficiency by using conjugated quinolizino acridine based hole transporting material. , 2014, Journal of the American Chemical Society.

[238]  R. Ramesh,et al.  Photovoltaic effects in BiFeO3 , 2009 .

[239]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[240]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[241]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .