On integer programming with bounded determinants

Let A be an $$(m \times n)$$(m×n) integral matrix, and let $$P=\{ x :A x \le b\}$$P={x:Ax≤b} be an n-dimensional polytope. The width of P is defined as $$ w(P)=min\{ x\in \mathbb {Z}^n{\setminus }\{0\} :max_{x \in P} x^\top u - min_{x \in P} x^\top v \}$$w(P)=min{x∈Zn\{0}:maxx∈Px⊤u-minx∈Px⊤v}. Let $$\varDelta (A)$$Δ(A) and $$\delta (A)$$δ(A) denote the greatest and the smallest absolute values of a determinant among all $$r(A) \times r(A)$$r(A)×r(A) sub-matrices of A, where r(A) is the rank of the matrix A. We prove that if every $$r(A) \times r(A)$$r(A)×r(A) sub-matrix of A has a determinant equal to $$\pm \varDelta (A)$$±Δ(A) or 0 and $$w(P)\ge (\varDelta (A)-1)(n+1)$$w(P)≥(Δ(A)-1)(n+1), then P contains n affine independent integer points. Additionally, we present similar results for the case of k-modular matrices. The matrix A is called totallyk-modular if every square sub-matrix of A has a determinant in the set $$\{0,\, \pm k^r :r \in \mathbb {N} \}$${0,±kr:r∈N}. When P is a simplex and $$w(P)\ge \delta (A)-1$$w(P)≥δ(A)-1, we describe a polynomial time algorithm for finding an integer point in P.

[1]  D. Malyshev,et al.  Classes of subcubic planar graphs for which the independent set problem is polynomially solvable , 2013 .

[2]  D. Malyshev,et al.  Classes of graphs critical for the edge list-ranking problem , 2014, Journal of Applied and Industrial Mathematics.

[4]  V. E. Alekseev,et al.  Planar graph classes with the independent set problem solvable in polynomial time , 2009 .

[5]  László Lovász,et al.  Covering Minima and Lattice Point Free Convex Bodies , 1986, FSTTCS.

[6]  R. Gomory Some polyhedra related to combinatorial problems , 1969 .

[7]  S. Vajda,et al.  Integer Programming and Network Flows , 1970 .

[8]  B. Kotnyek A generalization of totally unimodular and network matrices , 2002 .

[9]  D. Malyshev A study of the boundary graph classes for colorability problems , 2013, Journal of Applied and Industrial Mathematics.

[10]  R E Gomory,et al.  Faces of an integer polyhedron. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R E Gomory,et al.  ON THE RELATION BETWEEN INTEGER AND NONINTEGER SOLUTIONS TO LINEAR PROGRAMS. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Sergey I. Veselov,et al.  Integer program with bimodular matrix , 2008, Discret. Optim..

[13]  G. Ziegler Lectures on Polytopes , 1994 .

[14]  Alexander E. Litvak,et al.  The Flatness Theorem for Nonsymmetric Convex Bodies via the Local Theory of Banach Spaces , 1999, Math. Oper. Res..

[15]  Günter M. Ziegler,et al.  On the Maximal Width of Empty Lattice Simplices , 2000, Eur. J. Comb..

[16]  Jean-Michel Kantor On the Width of Lattice-Free simplices , 1997 .

[17]  M. Rudelson Distances Between Non-symmetric Convex Bodies and the $$MM^* $$ -estimate , 1998, math/9812010.

[18]  Hamdy A. Taha The Asymptotic Integer Algorithm , 1975 .

[19]  András Sebö,et al.  An Introduction to Empty Lattice Simplices , 1999, IPCO.

[20]  Manfred W. Padberg,et al.  The boolean quadric polytope: Some characteristics, facets and relatives , 1989, Math. Program..

[21]  Michael J. Todd,et al.  Polynomial Algorithms for Linear Programming , 1988 .

[22]  Vadim V. Lozin,et al.  Boundary properties of graphs for algorithmic graph problems , 2011, Theor. Comput. Sci..

[23]  Vadim V. Lozin,et al.  The Maximum Independent Set Problem in Planar Graphs , 2008, MFCS.

[24]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[25]  Reznick,et al.  An Introduction to Empty Lattice-simplices , 1999 .

[26]  Irwin E. Schochetman,et al.  On the minors of an incidence matrix and its Smith normal form , 1995 .

[27]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[28]  D. Gribanov The Flatness Theorem for Some Class of Polytopes and Searching an Integer Point , 2014 .

[29]  Wojciech Banaszczyk,et al.  Inequalities for convex bodies and polar reciprocal lattices inRn II: Application ofK-convexity , 1996, Discret. Comput. Geom..

[30]  Valery Shevchenko Qualitative Topics in Integer Linear Programming , 1996 .

[31]  Gérard Cornuéjols,et al.  On Padberg's conjecture about almost totally unimodular matrices , 2000, Oper. Res. Lett..

[32]  Analysis of the impact of the number of edges in connected graphs on the computational complexity of the independent set problem , 2012 .

[33]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[34]  Gabriele Sicuro Graphs and Optimization , 2017 .