Cavity-assisted boosting of self-hybridization between excitons and photonic bound states in the continuum in multilayers of transition metal dichalcogenides

[1]  Wei Wang,et al.  Strong light-matter interactions in hybrid nanostructures with transition metal dichalcogenides , 2022, Journal of Optics.

[2]  J. Teng,et al.  Perovskite-transition metal dichalcogenides heterostructures: recent advances and future perspectives , 2022, Opto-Electronic Science.

[3]  Zhongjun Jiang,et al.  Applications of optically and electrically driven nanoscale bowtie antennas , 2022, Opto-Electronic Science.

[4]  Y. Liu,et al.  High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces , 2022, Opto-Electronic Advances.

[5]  Shimei Liu,et al.  Greatly Enhanced Plasmon-Exciton Coupling in Si/WS2/Au Nanocavities. , 2021, Nano letters.

[6]  A. Miroshnichenko,et al.  Enhanced Strong Coupling of TMDC Monolayers by Bound State in the Continuum , 2021, Laser & Photonics Reviews.

[7]  C. Png,et al.  Steering Room-Temperature Plexcitonic Strong Coupling: A Diexcitonic Perspective. , 2021, Nano letters.

[8]  D. Neshev,et al.  Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides , 2021, Reports on progress in physics. Physical Society.

[9]  A. Miroshnichenko,et al.  Boosting Strong Coupling in a Hybrid WSe2 Monolayer–Anapole–Plasmon System , 2021 .

[10]  Johannes E. Fröch,et al.  Quasi-BIC Resonant Enhancement of Second-Harmonic Generation in WS2 Monolayers. , 2020, Nano letters.

[11]  Sailing He,et al.  Normal-Incidence-Excited Strong Coupling Between Excitons and Symmetry-Protected Quasi-Bound States in the Continuum in Silicon Nitride-WS2 Heterostructures at Room Temperature. , 2020, The journal of physical chemistry letters.

[12]  Q. Gong,et al.  Controlling plasmon-exciton interactions through photothermal reshaping , 2020 .

[13]  M. S. Skolnick,et al.  Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum , 2019, Light: Science & Applications.

[14]  P. Hong,et al.  Dual bound states in the continuum enhanced second harmonic generation with Transition Metal Dichalcogenides monolayer , 2020, Opto-Electronic Advances.

[15]  P. Ajayan,et al.  Large Rabi splitting obtained in Ag-WS2 strong-coupling heterostructure with optical microcavity at room temperature , 2019, Opto-Electronic Advances.

[16]  Landobasa Y. M. Tobing,et al.  Manipulating Coherent Light–Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS2 Monolayer Coupled with Plasmonic Nanocavities , 2019, Advanced Optical Materials.

[17]  Andrea Alù,et al.  Separation of valley excitons in a MoS2 monolayer using a subwavelength asymmetric groove array , 2019, Nature Photonics.

[18]  N. Xu,et al.  Resonance Coupling in Heterostructures Composed of Silicon Nanosphere and Monolayer WS2: A Magnetic-Dipole-Mediated Energy Transfer Process. , 2019, ACS nano.

[19]  Mikael Käll,et al.  Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators , 2018, Nature Nanotechnology.

[20]  Andrey Bogdanov,et al.  Meta-optics and bound states in the continuum. , 2018, Science bulletin.

[21]  T. Shegai,et al.  Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems. , 2018, Nano letters.

[22]  D. Baranov,et al.  Self-Hybridized Exciton-Polaritons in Multilayers of Transition Metal Dichalcogenides for Efficient Light Absorption , 2018, ACS Photonics.

[23]  Jianhua Xu,et al.  Strong Coupling in Microcavity Structures: Principle, Design, and Practical Application , 2018, Laser & Photonics Reviews.

[24]  Hongxing Xu,et al.  Light-Emitting Plexciton: Exploiting Plasmon-Exciton Interaction in the Intermediate Coupling Regime. , 2018, ACS nano.

[25]  P. Lu,et al.  Rabi Splitting in a Plasmonic Nanocavity Coupled to a WS2 Monolayer at Room Temperature , 2018, ACS Photonics.

[26]  M. Terrones,et al.  Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS2 Structures. , 2017, ACS applied materials & interfaces.

[27]  D. Baranov,et al.  Novel Nanostructures and Materials for Strong Light–Matter Interactions , 2017 .

[28]  J. Baumberg,et al.  Research data supporting "Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature" , 2017 .

[29]  N. Xu,et al.  Room-Temperature Strong Light-Matter Interaction with Active Control in Single Plasmonic Nanorod Coupled with Two-Dimensional Atomic Crystals. , 2017, Nano letters.

[30]  M. Soljačić,et al.  Low-Loss Plasmonic Dielectric Nanoresonators. , 2016, Nano letters (Print).

[31]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[32]  S. Höfling,et al.  Physics and applications of exciton-polariton lasers. , 2016, Nature materials.

[33]  Boris Luk'yanchuk,et al.  Magnetic and electric hotspots with silicon nanodimers. , 2015, Nano letters.

[34]  J. Khurgin How to deal with the loss in plasmonics and metamaterials. , 2014, Nature nanotechnology.

[35]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[36]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[37]  C. Manzoni,et al.  Interplay between strong coupling and radiative damping of excitons and surface plasmon polaritons in hybrid nanostructures. , 2014, ACS nano.

[38]  David R. Smith,et al.  Plasmonic waveguide modes of film-coupled metallic nanocubes. , 2013, Nano letters.

[39]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[40]  Harald Giessen,et al.  Cavity plasmonics: large normal mode splitting of electric and magnetic particle plasmons induced by a photonic microcavity. , 2010, Nano letters.

[41]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2008, 0812.2748.

[42]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[43]  M. Atatüre,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2006, Nature.

[44]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[45]  Stephan W Koch,et al.  Vacuum Rabi splitting in semiconductors , 2006 .