The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates.

The CH/π hydrogen bond is an attractive molecular force occurring between a soft acid and a soft base. Contribution from the dispersion energy is important in typical cases where aliphatic or aromatic CH groups are involved. Coulombic energy is of minor importance as compared to the other weak hydrogen bonds. The hydrogen bond nature of this force, however, has been confirmed by AIM analyses. The dual characteristic of the CH/π hydrogen bond is the basis for ubiquitous existence of this force in various fields of chemistry. A salient feature is that the CH/π hydrogen bond works cooperatively. Another significant point is that it works in nonpolar as well as polar, protic solvents such as water. The interaction energy depends on the nature of the molecular fragments, CH as well as π-groups: the stronger the proton donating ability of the CH group, the larger the stabilizing effect. This Perspective focuses on the consequence of this molecular force in the conformation of organic compounds and supramolecular chemistry. Implication of the CH/π hydrogen bond extends to the specificity of molecular recognition or selectivity in organic reactions, polymer science, surface phenomena and interactions involving proteins. Many problems, unsettled to date, will become clearer in the light of the CH/π paradigm.

[1]  Steve Scheiner,et al.  Fundamental Properties of the CH···O Interaction: Is It a True Hydrogen Bond? , 1999 .

[2]  Karissa Utzat,et al.  The rotational spectrum and heavy-atom-planar structure of propargyl benzene (3-phenyl-1-propyne) , 2006 .

[3]  G. Melikyan,et al.  Intramolecular Cyclizations of Co2(CO)6-Complexed Propargyl Radicals: Synthesis of d,l- and meso-1,5-Cyclodecadiynes , 2008 .

[4]  M. Mazik,et al.  Molecular recognition of carbohydrates by artificial receptors: systematic studies towards recognition motifs for carbohydrates. , 2001, Chemistry.

[5]  M. Mazik,et al.  Recognition properties of an acyclic biphenyl-based receptor toward carbohydrates. , 2006, The Journal of organic chemistry.

[6]  F. Cañada,et al.  On the role of aromatic-sugar interactions in the molecular recognition of carbohydrates: A 3D view by using NMR , 2008 .

[7]  A. Pawlukojć,et al.  Low frequency internal modes of 1,2,4,5-tetramethylbenzene, tetramethylpyrazine and tetramethyl-1,4-benzoquinone INS, Raman, infrared and theoretical DFT studies. , 2006, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[8]  D. Tantillo,et al.  Perturbing the structure of the 2-norbornyl cation through C-H...N and C-H...pi interactions. , 2007, Journal of Organic Chemistry.

[9]  K. Harata,et al.  X-ray structure of turkey-egg lysozyme complex with tri-N-acetylchitotriose. Lack of binding ability at subsite A. , 1997, Acta crystallographica. Section D, Biological crystallography.

[10]  N. Hucher,et al.  A Calix[6]arene Receptor Rigidified by a Self-assembled Triammonium Cap: X-ray and NMR Characterization of the Binding of Polar Neutral Guests , 2005 .

[11]  Michael Lewis,et al.  Quantification of CH···π interactions: implications on how substituent effects influence aromatic interactions. , 2010, Chemistry.

[12]  Zhi Ma,et al.  Formation of linear supramolecular polymers that is driven by C-H⋅⋅⋅π interactions in solution and in the solid state. , 2011, Angewandte Chemie.

[13]  M. Nishio,et al.  An occurrence of attractive alkyl-phenyl interaction. The conformations of several 1-phenyl-2-alkanols. , 1981 .

[14]  Nobuaki Koga,et al.  Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods , 2010, J. Comput. Chem..

[15]  K. Kinbara,et al.  Systematic study of chiral discrimination upon crystallisation. Part 2.1 Chiral discrimination of 2-arylalkanoic acids by (1R,2S)-2-amino-1,2-diphenylethanol , 1998 .

[16]  G. Snatzke,et al.  Circulardichroismus von α-phellandren☆ , 1966 .

[17]  K. Yamaguchi,et al.  Orientational isomerism controlled by the difference in electronic environments of a self-assembling heterodimeric capsule. , 2007, The Journal of organic chemistry.

[18]  S. Khorasanizadeh,et al.  Recognition of trimethyllysine by a chromodomain is not driven by the hydrophobic effect , 2007, Proceedings of the National Academy of Sciences.

[19]  J. Simons,et al.  High resolution electronic spectroscopy of three n-alkylbenzenes: ethyl-, propyl-, and butylbenzene , 2002 .

[20]  Vojtech Spiwok,et al.  Modelling of carbohydrate–aromatic interactions: ab initio energetics and force field performance , 2006, J. Comput. Aided Mol. Des..

[21]  S. Tsuzuki,et al.  Experimental and theoretical determination of the accurate interaction energies in benzene-halomethane: the unique nature of the activated CH/pi interaction of haloalkanes. , 2008, Physical chemistry chemical physics : PCCP.

[22]  M. Linares,et al.  Theoretical study of the intramolecular CH/π interaction effect on rotation energy barriers in 1-pentene, 2,2′-diisopropyl biphenyl and some amino and nitro derivatives , 2004 .

[23]  H. O̅kawa,et al.  Substituent effect on stereoselectivity for cobalt(III), chromium(III), and manganese(III) complexes of ring-substituted-1-l-menthyloxy-3-benzoylacetones , 1985 .

[24]  M. Mazik,et al.  Molecular recognition of carbohydrates with acyclic pyridine-based receptors. , 2004, The Journal of organic chemistry.

[25]  J. Atwood,et al.  Ball and Socket Nanostructures: New Supramolecular Chemistry Based on Cyclotriveratrylene , 1994 .

[26]  D. Philp,et al.  A computational investigation of cooperativity in weakly hydrogen-bonded assemblies , 1998 .

[27]  Marie-Pierre Gaigeot,et al.  Quantum Effects in the Threshold Photoionization and Energetics of the Benzene−H2O and Benzene−D2O Complexes: Experiment and Simulation , 1998 .

[28]  G. Joshi,et al.  Progress in biomimetic carbohydrate recognition , 2009, Cellular and Molecular Life Sciences.

[29]  Yunqian Zhang,et al.  Supramolecular assemblies of host–guest complexes of cucurbit[6]uril with some organic molecules , 2010 .

[30]  A. Vacca,et al.  Chiral diaminopyrrolic receptors for selective recognition of mannosides, part 1: design, synthesis, and affinities of second-generation tripodal receptors. , 2011, Chemistry.

[31]  J. Rebek,et al.  Reversible encapsulation of terminal alkenes and alkynes , 2008 .

[32]  H. Tomori,et al.  Facile Optical Resolution of a Dibenzopyrazinoazepine Derivative and the Nature of Molecular Recognition of Amines by Chiral 2,3-Di-O-(arylcarbonyl)tartaric Acids , 1996 .

[33]  Noyori,et al.  Asymmetric transfer hydrogenation of benzaldehydes , 2000, Organic letters.

[34]  Yasutaka Tanaka,et al.  Highly cooperative binding of alkyl glucopyranosides to the resorcinol cyclic tetramer due to intracomplex guest-guest hydrogen-bonding: solvophobicity/solvophilicity control by an alkyl group of the geometry, stoichiometry, stereoselectivity, and cooperativity , 1992 .

[35]  M. Mazik,et al.  Amide, Amino, Hydroxy and Aminopyridine Groups as Building Blocks for Carbohydrate Receptors , 2008 .

[36]  K. Kinbara,et al.  Effect of a Substituent on an Aromatic Group in Diastereomeric Resolution , 2000 .

[37]  K. Harata,et al.  Protein-carbohydrate interactions in human lysozyme probed by combining site-directed mutagenesis and affinity labeling. , 2000, Biochemistry.

[38]  Ueno,et al.  Enantioselective inclusion of methyl phenyl sulfoxides and benzyl methyl sulfoxides by (R)-phenylglycyl-(R)-phenylglycine and the crystal structures of the inclusion cavities , 2000, The Journal of organic chemistry.

[39]  P. Chakrabarti,et al.  Stereospecific interactions of proline residues in protein structures and complexes. , 2003, Journal of molecular biology.

[40]  M. Mazik Molecular recognition of carbohydrates by acyclic receptors employing noncovalent interactions. , 2009, Chemical Society reviews.

[41]  D. A. Dougherty,et al.  The Cationminus signpi Interaction. , 1997, Chemical reviews.

[42]  S. O. N. Lill Evaluation of dispersion-corrected density functional theory (B3LYP-DCP) for compounds of biochemical interest. , 2010, Journal of molecular graphics & modelling.

[43]  I. Carvalho,et al.  Novel and facile solution-phase synthesis of 2,5-diketopiperazines and O-glycosylated analogs , 2009 .

[44]  K. Morokuma,et al.  Preferred Conformation of 1-Phenyl-2-propanol. Ab initio and Molecular Mechanics Calculations with Geometry Optimization , 1985 .

[45]  I. Karle,et al.  The conformation of levopimaric acid and related dienes , 1972 .

[46]  M. Ōki,et al.  Benzene-Ethene Interactions as Studied by ab initio Calculations , 2000 .

[47]  Gabriel Cuevas,et al.  Molecular recognition of saccharides by proteins. Insights on the origin of the carbohydrate-aromatic interactions. , 2005, Journal of the American Chemical Society.

[48]  J. Rebek,et al.  Helical folding of alkanes in a self-assembled, cylindrical capsule. , 2004, Journal of the American Chemical Society.

[49]  Marcey L. Waters,et al.  Comparison of C−H···π and Hydrophobic Interactions in a β-Hairpin Peptide: Impact on Stability and Specificity , 2004 .

[50]  S. Tsuzuki,et al.  Synthesis and Structure of 16 π Octaalkyltetraphenylporphyrins , 2005 .

[51]  F. Cañada,et al.  Chiral diaminopyrrolic receptors for selective recognition of mannosides, part 2: a 3D view of the recognition modes by X-ray, NMR spectroscopy, and molecular modeling. , 2011, Chemistry.

[52]  H. Furuta,et al.  Self-assembly of Zn(II) Porphyrin-1,2,3-Triazole Conjugate with Alcohol Glue , 2010 .

[53]  K. Sundararajan,et al.  A matrix isolation and ab initio study of the C2H2MeOH complex , 2006 .

[54]  Di Sun,et al.  A novel silver(I)-containing supramolecular framework incorporating eight different hydrogen bond motifs , 2010 .

[55]  K. Baldridge,et al.  Through-space interactions between face-to-face, center-to-edge oriented arenes: importance of polar-pi effects. , 2003, Organic & biomolecular chemistry.

[56]  J. Rebek,et al.  Hydrocarbon binding inside a hexameric pyrogallol[4]arene capsule. , 2005, Organic letters.

[57]  J. Rebek,et al.  Compressed alkanes in reversible encapsulation complexes. , 2009, Nature chemistry.

[58]  Y. Aoyama,et al.  Complexation of hydrophobic sugars and nucleosides in water with tetrasulfonate derivatives of resorcinol cyclic tetramer having a polyhydroxy aromatic cavity: importance of guest-host CH-.pi. interaction , 1992 .

[59]  A. Ebrahimi,et al.  The role of H⋯π interaction on some calculated NMR data , 2009 .

[60]  Tomonaga Ozawa,et al.  The importance of CH/pi hydrogen bonds in rational drug design: An ab initio fragment molecular orbital study to leukocyte-specific protein tyrosine (LCK) kinase. , 2008, Bioorganic & medicinal chemistry.

[61]  H. Hopf,et al.  Unexpected conformational behavior of gaseous 1-pentyne ☆ , 1999 .

[62]  Toshiaki Takahashi,et al.  Enantiomeric Inclusion of α-Hydroxy Esters by (R)-(1-Naphthyl)glycyl-(R)-phenylglycine and the Crystal Structures of the Inclusion Cavities , 1999 .

[63]  H. Hopf,et al.  Structure and conformation of gaseous butyronitrile: C–H⋯π interaction? , 2000 .

[64]  The Influence of the Side Chain Length on −OCH3−π Interactions Determining the Crystal Packing of Four Substituted 1,4-Bis(α-styryl)benzenes , 2004 .

[65]  J. Simons,et al.  Carbohydrate molecular recognition: a spectroscopic investigation of carbohydrate-aromatic interactions. , 2007, Physical chemistry chemical physics : PCCP.

[66]  M. Nishio,et al.  interaction in the conformation of organic compounds. A database study , 1999 .

[67]  Dirk Neumann,et al.  SLICK - Scoring and Energy Functions for Protein-Carbohydrate Interactions , 2006, J. Chem. Inf. Model..

[68]  M. Kataoka,et al.  A Single CH/π Weak Hydrogen Bond Governs Stability and the Photocycle of the Photoactive Yellow Protein , 2006 .

[69]  Sarah E. Kiehna,et al.  Carbohydrate-pi interactions: what are they worth? , 2008, Journal of the American Chemical Society.

[70]  M. Mazik,et al.  Pyridine-based receptors with high affinity for carbohydrates. Influence of the degree of steric hindrance at pyridine nitrogen on the binding mode , 2004 .

[71]  Jesús Jiménez-Barbero,et al.  On the importance of carbohydrate-aromatic interactions for the molecular recognition of oligosaccharides by proteins: NMR studies of the structure and binding affinity of AcAMP2-like peptides with non-natural naphthyl and fluoroaromatic residues. , 2005, Chemistry.

[72]  Bo Liu,et al.  IR-spectral signatures of aromatic-sugar complexes: probing carbohydrate-protein interactions. , 2007, Angewandte Chemie.

[73]  Robert M. Hughes,et al.  Effects of Lysine Acetylation in a β-Hairpin Peptide: Comparison of an Amide−π and a Cation−π Interaction , 2006 .

[74]  Kenji Kobayashi,et al.  Encapsulated-guest rotation in a self-assembled heterocapsule directed toward a supramolecular gyroscope , 2009, Proceedings of the National Academy of Sciences.

[75]  M. Vincent,et al.  Carbohydrate-aromatic pi interactions: a test of density functionals and the DFT-D method. , 2009, Physical chemistry chemical physics : PCCP.

[76]  H Takahashi,et al.  CH/π Interactions as Demonstrated in the Crystal Structure of Host/Guest Compounds. A Database Study , 2000 .

[77]  J. López,et al.  The C-H...pi hydrogen bond in the benzene-trifluoromethane adduct: a rotational study. , 2005, Angewandte Chemie.

[78]  Daniel Escudero,et al.  MP2 Study of synergistic effects between X–H/π (X = C,N,O) and π–π interactions , 2008 .

[79]  Hiroyuki Furuta,et al.  Benzene ring trimer interactions modulate supramolecular structures. , 2007, Angewandte Chemie.

[80]  G. Guirgis,et al.  Microwave spectra and barrier to internal rotation in cyclopropylmethylsilane. , 2009, Journal of Physical Chemistry A.

[81]  T. K. Manojkumar,et al.  p-benzoquinone-benzene clusters as potential nanomechanical devices: a theoretical study. , 2004, The Journal of chemical physics.

[82]  M. Mazik,et al.  Molecular recognition of carbohydrates with artificial receptors: mimicking the binding motifs found in the crystal structures of protein-carbohydrate complexes. , 2005, Journal of the American Chemical Society.

[83]  M. Nishio,et al.  CH/π interaction: Implications in organic chemistry , 1989 .

[84]  J. Atwood,et al.  Methane adsorption in a supramolecular organic zeolite. , 2010, Chemistry.

[85]  J. Dutasta,et al.  Cryptophanes and their complexes--present and future. , 2009, Chemical reviews.

[86]  W. Schneider,et al.  NUCLEAR MAGNETIC RESONANCE MEASUREMENTS OF COMPLEXES OF CHLOROFORM WITH AROMATIC MOLECULES AND OLEFINS , 1957 .

[87]  A. Gavezzotti,et al.  Cocrystallization with acetylene. The 1:1 Complex with benzene: Crystal growth, X-ray diffraction and molecular simulations. , 2003 .

[88]  C. M. Huggins,et al.  Systematics of the Infrared Spectral Properties of Hydrogen Bonding Systems: Frequency Shift, Half Width and Intensity , 1956 .

[89]  E. Charney,et al.  Conformational Mobility of (-)-α-Phellandrene, Deduced from its Optical Rotatory Dispersion , 1962 .

[90]  E. Dalcanale,et al.  Cavitands as versatile molecular receptors , 1992 .

[91]  Sarah E. Kiehna,et al.  Evaluation of a carbohydrate-pi interaction in a peptide model system. , 2007, Chemical communications.

[92]  D. Mingos,et al.  Novel intermolecular C–H ⋯π it interactions: an ab initio and density functional theory study , 1996 .

[93]  M. Iwaoka,et al.  Hydrogen-Bond-Like Nature of the CH/π Interaction as Evidenced by Crystallographic Database Analyses and Ab Initio Molecular Orbital Calculations , 2001 .

[94]  A. W. Burgstahler,et al.  THE CONFIGURATIONS OF LEVOPIMARIC ACID AND α-PHELLANDRENE; INTERPRETATION OF THEIR ROTATORY DISPERSIONS , 1961 .

[95]  Ashley L. Ringer,et al.  Aliphatic C-H/pi interactions: Methane-benzene, methane-phenol, and methane-indole complexes. , 2006, The journal of physical chemistry. A.

[96]  R. B. Sunoj,et al.  Quantification of binding affinities of essential sugars with a tryptophan analogue and the ubiquitous role of C-H···π interactions. , 2011, Physical chemistry chemical physics : PCCP.

[97]  M. Nishio,et al.  CH/pi interactions as demonstrated in the crystal structure of guanine-nucleotide binding proteins, Src homology-2 domains and human growth hormone in complex with their specific ligands. , 1998, Bioorganic & medicinal chemistry.

[98]  V. Puranik,et al.  Conformational Preferences in Molybdenum(II) .pi.-Allyl Complexes: Role of CH/.pi. Interaction , 1994 .

[99]  M. Cacciarini,et al.  A tricatecholic receptor for carbohydrate recognition: synthesis and binding studies. , 2007, The Journal of organic chemistry.

[100]  A. Katrusiak,et al.  Association CH···π and No van der Waals Contacts at the Lowest Limits of Crystalline Benzene I and II Stability Regions , 2010 .

[101]  M. Hirota,et al.  Substituent Effect on the Enthalpies of Formation of CH/π Complexes of Aromatic π-Bases , 1993 .

[102]  O. Takahashi,et al.  Molecular orbital calculations of the substituent effect on intermolecular CH/π interaction in C2H3X-C6H6 complexes (X=H, F, Cl, Br, and OH) , 2003 .

[103]  M. Spackman,et al.  Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. , 2007, Chemical communications.

[104]  M. Nishio,et al.  CH/pi interaction in the conformation of peptides. A database study. , 1999, Bioorganic & medicinal chemistry.

[105]  K. Kinbara,et al.  Rational design of CH/pi interaction sites in a basic resolving agent. , 2004, Journal of Organic Chemistry.

[106]  Kosuke Okazaki,et al.  CH/π hydrogen bonds determine the selectivity of the Src homology 2 domain to tyrosine phosphotyrosyl peptides: An ab initio fragment molecular orbital study , 2008, J. Comput. Chem..

[107]  S Bracco,et al.  Methane and carbon dioxide storage in a porous van der Waals crystal. , 2005, Angewandte Chemie.

[108]  H. Senn,et al.  Weak intra- and intermolecular interactions in a binaphthol imine: an experimental charge-density study on (+/-)-8'-benzhydrylideneamino-1,1'-binaphthyl-2-ol. , 2009, Acta crystallographica. Section B, Structural science.

[109]  M. Nishio,et al.  Origin of the axial-alkyl preference of (R)-α-phellandrene and related compounds investigated by high-level ab initio MO calculations. Importance of the CH/π hydrogen bond , 2008 .

[110]  M. Nishio,et al.  The CH/π interaction: Significance in molecular recognition , 1995 .

[111]  M. Mazik,et al.  Recognition properties of receptors based on dimesitylmethane-derived core: di- vs. monosaccharide preference. , 2009, Organic & biomolecular chemistry.

[112]  G. Cuevas,et al.  Calorimetric measurement of the CH/pi interaction involved in the molecular recognition of saccharides by aromatic compounds. , 2008, The Journal of organic chemistry.

[113]  Florante A. Quiocho,et al.  Novel stereospecificity of the L-arabinose-binding protein , 1984, Nature.

[114]  B. Maes,et al.  The C-H···π interaction in the halothane/ethene complex : A cryosolution infrared and Raman study , 2009 .

[115]  M. Mazik,et al.  Highly effective recognition of carbohydrates by phenanthroline-based receptors: alpha- versus beta-anomer binding preference. , 2009, Chemistry.

[116]  Gautam R. Desiraju,et al.  The Weak Hydrogen Bond: In Structural Chemistry and Biology , 1999 .

[117]  J. A. Paixão,et al.  Density functional and X-ray diffraction studies of two polymorphs of N,N',N , 2008 .

[118]  K. Harata,et al.  Interactions of wheat-germ agglutinin with GlcNAcβ1,6Gal sequence , 2002 .

[119]  Petety V Balaji,et al.  Identification of common structural features of binding sites in galactose‐specific proteins , 2004, Proteins.

[120]  K. Jose,et al.  Effect of matrix on IR frequencies of acetylene and acetylene-methanol complex: infrared matrix isolation and ab initio study. , 2007, The Journal of chemical physics.

[121]  Shinji Ishihara,et al.  The Aromatic CH/π Hydrogen Bond as an Important Factor in Determining the Relative Stability of Diastereomeric Salts Relevant to Enantiomeric Resolution − A Crystallographic Database Study , 2004 .

[122]  M. Akazome,et al.  Enantiomeric recognition of alkyl phenyl sulfoxides by crystalline (R)-phenylglycyl-(R)-phenylglycine , 1997 .

[123]  A. Pappalardo,et al.  Heteroditopic Chiral Uranyl-Salen Receptor for Molecular Recognition of Amino Acid Ammonium Salts , 2010 .

[124]  Y. Sasidhar,et al.  Insights into the role of the aromatic residue in galactose-binding sites: MP2/6-311G++** study on galactose- and glucose-aromatic residue analogue complexes. , 2005, Biochemistry.

[125]  M. W. Wong,et al.  Saturated hydrocarbon-benzene complexes: theoretical study of cooperative CH/pi interactions. , 2006, The journal of physical chemistry. A.

[126]  M. Fujita,et al.  A new system for molecular recognition: Highly specific inclusion of ()-isopropyl phenyl sulfoxide by solid ()-phenylglycyl-()-phenylglycine , 1990 .

[127]  K. Kinbara,et al.  (2-Naphthyl)glycolic acid: a tailored resolving agent for p-substituted 1-arylethylamines , 1998 .

[128]  Uwe Koch,et al.  CHARACTERIZATION OF C-H-O HYDROGEN-BONDS ON THE BASIS OF THE CHARGE-DENSITY , 1995 .

[129]  M. Mazik,et al.  High α/β-Anomer Selectivity in Molecular Recognition of Carbohydrates by Artificial Receptors , 2002 .

[130]  M. Cacciarini,et al.  Pyrrolic tripodal receptors effectively recognizing monosaccharides. Affinity assessment through a generalized binding descriptor. , 2007, Journal of the American Chemical Society.

[131]  C. Barbey,et al.  Variation in conformation and weak intermolecular interaction networks of substituted 3-benzyl-2-phenyl-1,3,2-oxazaphospholidin-2-ones , 2010 .

[132]  E. M. García-Frutos,et al.  Self-assembly of C3-symmetrical hexaaryltriindoles driven by solvophobic and CH-pi interactions. , 2010, The Journal of organic chemistry.

[133]  A. Magrì,et al.  Energetics of the Inclusion of Organic Molecules by Rigidified Cone Calix[4]arenes in Carbon Tetrachloride , 2001 .

[134]  J. Bertran,et al.  CH/pi interactions in DNA and proteins. A theoretical study. , 2007, The journal of physical chemistry. B.

[135]  J. Simons,et al.  Conformationally induced transition moment rotations in theS1←S0 electronic spectra ofn-propylbenzene andn-butylbenzene , 1997 .

[136]  C. Massera,et al.  Monotopic and heteroditopic calix[4]arene receptors as hosts for pyridinium and viologen ion pairs: a solution and solid-state study. , 2009, Organic & biomolecular chemistry.

[137]  A. Secchi,et al.  Interactions of the aromatic cavity of rigid calix[4]arene cone conformers with acid CH3 and CH2 containing guests in apolar solvents , 2001 .

[138]  S. V. Larionov,et al.  Copper(II) complexes based on a new chelating 4-(3,5-diphenyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)pyrimidine ligand: Synthesis and crystal structures. Lone pair-π, C-H···π, π-π and C-H···A (A = N, Cl) non-covalent interactions , 2010 .

[139]  M. Akazome,et al.  Asymmetric recognition of 1-arylethylamines by (R)-phenylglycyl-(R)-phenylglycine and its mechanism , 1997 .

[140]  A. P. Davis,et al.  Solvent effects in carbohydrate binding by synthetic receptors: implications for the role of water in natural carbohydrate recognition. , 2008, Angewandte Chemie.

[141]  R. Eritja,et al.  Experimental measurement of carbohydrate-aromatic stacking in water by using a dangling-ended DNA model system. , 2008, Chemistry.

[142]  K. Yamaguchi,et al.  Guest-induced assembly of tetracarboxyl-cavitand and tetra(3-pyridyl)-cavitand into a heterodimeric capsule via hydrogen bonds and CH-halogen and/or CH-pi interaction: control of the orientation of the encapsulated guest. , 2003, Journal of the American Chemical Society.

[143]  Cristina Nativi,et al.  Selective Recognition of β-Mannosides by Synthetic Tripodal Receptors: A 3D View of the Recognition Mode by NMR , 2010 .

[144]  N. Adir,et al.  Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[145]  S. Tsuzuki,et al.  Magnitude of the CH/pi interaction in the gas phase: experimental and theoretical determination of the accurate interaction energy in benzene-methane. , 2006, The journal of physical chemistry. A.

[146]  G. Desiraju,et al.  Distinction between the weak hydrogen bond and the van der Waals interaction , 1998 .

[147]  M. Nishio,et al.  Electronic substituent effect on intramolecular CH/π interaction as evidenced by NOE experiments , 2000 .

[148]  M. Nishio,et al.  CH/π interactions as disclosed on the fullerene convex surface. A database study , 2003 .

[149]  K. Kinbara,et al.  Synthesis, absolute configuration, and application of enantiopure trans-1-aminobenz[f]indan-2-ol. , 2005, Chirality.

[150]  Piero Sozzani,et al.  A family of supramolecular frameworks of polyconjugated molecules hosted in aromatic nanochannels. , 2004, Angewandte Chemie.

[151]  W. Nau,et al.  Spherical shape complementarity as an overriding motif in the molecular recognition of noncharged organic guests by p-sulfonatocalix[4]arene: complexation of bicyclic azoalkanes. , 2005, The Journal of organic chemistry.

[152]  S. O. N. Lill Application of Dispersion-Corrected Density Functional Theory , 2009 .

[153]  J. Rebek,et al.  Helical Conformation of Alkanes in a Hydrophobic Cavitand , 2003, Science.

[154]  M. Muraki The importance of CH/pi interactions to the function of carbohydrate binding proteins. , 2002, Protein and peptide letters.

[155]  Yuka Kobayashi,et al.  The role of CH/pi interaction in the stabilization of less-soluble diastereomeric salt crystals. , 2007, Chemical record.

[156]  F. Piuzzi,et al.  Gas phase hydrogen-bonded complexes of aromatic molecules: Photoionization and energetics , 2002 .

[157]  Kazuo Kitaura,et al.  Importance of CH/π hydrogen bonds in recognition of the core motif in proline‐recognition domains: An Ab initio fragment molecular orbital study , 2011, J. Comput. Chem..

[158]  Cassandra D M Churchill,et al.  Noncovalent interactions involving histidine: the effect of charge on pi-pi stacking and T-shaped interactions with the DNA nucleobases. , 2009, The journal of physical chemistry. B.

[159]  R. Bohn,et al.  Three conformers observed and characterized in 1-hexyne , 2001 .

[160]  R. Bohn,et al.  Rotational spectra of benzyl cyanide assignment of the planar conformer and evidence of a low barrier to internal rotation , 1991 .

[161]  Juan J. Novoa,et al.  The C–H⋯π bonds: strength, identification, and hydrogen-bonded nature: a theoretical study , 2000 .

[162]  J. Chandrasekhar,et al.  Ab Initio Study of Energetics of X-H···π (X = N, O, and C) Interactions Involving a Heteroaromatic Ring , 1998 .

[163]  I. Miyahara,et al.  Time-programmed peptide helix inversion of a synthetic metal complex triggered by an achiral NO3- anion. , 2008, Journal of the American Chemical Society.

[164]  Yi-zhi Li,et al.  Coordination molecular hats binding acetonitrile via C-H...pi interactions. , 2008, Dalton transactions.

[165]  J. Simons,et al.  Carbohydrate–aromatic interactions: A computational and IR spectroscopic investigation of the complex, methyl α-l-fucopyranoside · toluene, isolated in the gas phase , 2009 .

[166]  J. Schatz,et al.  Water-soluble calixarenes—self-aggregation and complexation of noncharged aromatic guests in buffered aqueous solution , 2009 .

[167]  Larry A. Curtiss,et al.  Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity , 1979 .

[168]  Kazumasa Honda,et al.  The Magnitude of the CH/π Interaction between Benzene and Some Model Hydrocarbons , 2000 .

[169]  H. Ono,et al.  Preparation of single-enantiomer 2-methyl-4-heptanol, a pheromone of Metamasius hemipterus, using (S)-2-methoxy-2-(1-naphthyl)propionic acid. , 2006, Journal of chromatography. A.

[170]  Amol G. Dikundwar,et al.  Crystal structures of fluorinated aryl biscarbonates and a biscarbamate: a counterpoise between weak intermolecular interactions and molecular symmetry , 2011 .

[171]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[172]  Feihe Huang,et al.  Syntheses of copillar[5]arenes by co-oligomerization of different monomers. , 2010, Organic letters.

[173]  M. Mazik,et al.  Phenanthroline unit as a building block for carbohydrate receptors. , 2008, The Journal of organic chemistry.

[174]  Evidence for a ball-shaped cyclen cyclophane: an experimental and first principles study. , 2009, Physical chemistry chemical physics : PCCP.

[175]  O. Reinaud,et al.  Polarizing a hydrophobic cavity for the efficient binding of organic guests: the case of calix[6]tren, a highly efficient and versatile receptor for neutral or cationic species. , 2005, Journal of the American Chemical Society.

[176]  T. Takagi,et al.  Computational studies on CH/π interactions , 1987 .

[177]  R. Crespo‐Otero,et al.  Ab initio and matrix isolation study of the acetylene–furan dimer , 2008 .

[178]  Luís M. N. B. F. Santos,et al.  The role of aromatic interactions in the structure and energetics of benzyl ketones. , 2010, Physical chemistry chemical physics : PCCP.

[179]  O. Reinaud,et al.  A novel C3v-symmetrical calix[6](aza)cryptand with a remarkably high and selective affinity for small ammoniums. , 2004, The Journal of organic chemistry.

[180]  E. Cabaleiro-Lago,et al.  Study of the interaction in clusters formed by phenol and CH3X (X=CN,F,Cl) molecules. , 2008, The Journal of chemical physics.

[181]  Mark D. Smith,et al.  Toward charge-neutral ‘soft scorpionates’: Coordination chemistry and Lewis acid promoted isomerization of tris(1-organo-imidazol-2-ylthio)methanes , 2009 .

[182]  O. Matsuoka,et al.  Ab initio Hartree—Fock calculations on acetylene dimer , 1979 .

[183]  R. Bohn,et al.  Structure and relative energies of the conformers of n‐butyl cyanide and 5‐hexynenitrile , 2002 .

[184]  M. Mazik,et al.  Crown ethers as building blocks for carbohydrate receptors. , 2006, Organic letters.

[185]  M. Mazik,et al.  Mimicking the Binding Motifs Found in the Crystal Structures of Protein–Carbohydrate Complexes: An Aromatic Analogue of Serine or Threonine Side Chain Hydroxyl/Main Chain Amide , 2007 .

[186]  J. Durig,et al.  Infrared and Raman spectra, conformational stability, ab initio calculations of structure and vibrational assignment of butyronitrile , 2001 .

[187]  M. Mazik,et al.  Carboxylate-based receptors for the recognition of carbohydrates in organic and aqueous media. , 2006, The Journal of organic chemistry.

[188]  M. Tamres Aromatic Compounds as Donor Molecules in Hydrogen Bonding1 , 1952 .

[189]  P. Sozzani,et al.  Self-assembly of 1,4-cis-polybutadiene and an aromatic host to fabricate nanostructured crystals by CH⋯π interactions , 2010 .

[190]  D. Bolam,et al.  Carbohydrate-binding modules: fine-tuning polysaccharide recognition. , 2004, The Biochemical journal.

[191]  P. Sozzani,et al.  Cooperation of multiple CH...pi interactions to stabilize polymers in aromatic nanochannels as indicated by 2D solid state NMR. , 2004, Chemical communications.

[192]  R. Noyori,et al.  CH/π Attraction: The Origin of Enantioselectivity in Transfer Hydrogenation of Aromatic Carbonyl Compounds Catalyzed by Chiral η6 -Arene-Ruthenium(II) Complexes. , 2001, Angewandte Chemie.

[193]  M. Akazome,et al.  Specific Inclusion of 1,2-Dimethoxybenzene Derivatives by Crystalline (R)-Arylglycyl-(R)-phenylglycines and Its Structure. , 1997 .

[194]  M. Akazome,et al.  Inclusion compounds of l,d-dipeptide with small sulfoxides: flexible sheet structure of (S)-phenylglycyl-(R)-phenylglycine , 2007 .

[195]  Izabela D. Madura,et al.  Crystal structure of dicyclopentadienylaluminum complex directed by weak C–H…π interactions , 2010 .

[196]  W. Jäger,et al.  Microwave studies of the three conformers of butyl cyanide , 1997 .

[197]  U. Samanta,et al.  Environment of tryptophan side chains in proteins , 2000, Proteins.

[198]  W. Zierkiewicz Modelling of interactions between volatile anaesthetics (halothane, enflurane) and aromatic compounds, ab initio study , 2010 .

[199]  Y. Aoyama,et al.  Oligosaccharide-Peptide Interaction. Binding of Maltodextrin to Trp-Trp via Sugar-Bisindole Intercalation , 1993 .

[200]  D. Quiñonero,et al.  Experimental and computational study of the interplay between C-H/pi and anion-pi interactions. , 2010, Dalton transactions.

[201]  M. Nishio,et al.  CH/pi interactions in the crystal structure of class I MHC antigens and their complexes with peptides. , 1998, Bioorganic & medicinal chemistry.

[202]  T. Häber,et al.  Isomer-selective vibrational spectroscopy of benzene-acetylene aggregates: comparison with the structure of the benzene-acetylene cocrystal. , 2008, Angewandte Chemie.

[203]  Bobby G. Sumpter,et al.  Assessment of standard force field models against high‐quality ab initio potential curves for prototypes of π–π, CH/π, and SH/π interactions , 2009, J. Comput. Chem..

[204]  M. Nishio,et al.  Attractive interaction between aliphatic and aromatic systems , 1977 .

[205]  M. Mazik,et al.  Isopropylamino and isobutylamino groups as recognition sites for carbohydrates: acyclic receptors with enhanced binding affinity toward β-galactosides. , 2010, The Journal of organic chemistry.

[206]  Kazumasa Honda,et al.  High-Level ab Initio Calculations of Interaction Energies of C2H4-CH4and C2H6-CH4Dimers: A Model Study of CH/π Interaction , 1999 .

[207]  J. Baruah,et al.  Effect of phenyl group on the self assembly of N,N′-bis-(2-phenylglycinyl)pyromellitic diimide with aromatic hydrocarbons , 2008 .

[208]  S. Chakrabarti,et al.  CH/pi interaction in benzene and substituted derivatives with halomethane: a combined density functional and dispersion-corrected density functional study. , 2009, The journal of physical chemistry. A.

[209]  Anthony J. Stone,et al.  An intermolecular perturbation theory for the region of moderate overlap , 1984 .

[210]  S. Larsen,et al.  Charge Density Study of Naphthalene Based on X-ray Diffraction Data at Four Different Temperatures and Theoretical Calculations , 2004 .

[211]  P. Sadler,et al.  Organometallic Osmium(II) and Ruthenium(II) Biphenyl Sandwich Complexes: X‐ray Crystal Structures and 187Os NMR Spectroscopic Studies in Solution , 2009 .

[212]  K. Kinbara,et al.  A high-performance, tailor-made resolving agent: remarkable enhancement of resolution ability by introducing a naphthyl group into the fundamental skeleton , 2000 .

[213]  J. I. Seeman,et al.  Torsional motion in aromatic molecules: conformational analysis of methyl-, ethyl-, and n-propylbenzenes , 1987 .

[214]  C. David Sherrill,et al.  Substituent Effects in π−π Interactions: Sandwich and T-Shaped Configurations , 2004 .

[215]  K. J. Børve,et al.  Carbon 1s photoelectron spectroscopy of 1-pentyne conformers , 2009 .

[216]  K. Baldridge,et al.  Symmetry and polar-π effects on the dynamics of enshrouded aryl-alkyne molecular rotors , 2010 .

[217]  T. Row,et al.  Analysis of weak interactions involving organic fluorine: Insights from packing features in substituted 4-keto-tetrahydroindoles , 2008 .

[218]  Yuka Kobayashi,et al.  Periodic ab initio approach for the cooperative effect of CH/pi interaction in crystals: relative energy of CH/pi and hydrogen-bonding interactions. , 2005, Journal of the American Chemical Society.

[219]  I. Fujii,et al.  Chiral Space Formed by (+)‐(1S)‐1,1′‐Binaphthalene‐2,2′‐diyl Phosphate: Recognition of Aliphatic L‐α‐Amino Acids , 2002 .

[220]  S. Rohani,et al.  Chiral discrimination in diastereomeric salts of chlorine-substituted mandelic acid and phenylethylamine. , 2010, Chirality.

[221]  A. Scarso,et al.  Gases as guests in benzocyclotrimer cage hosts. , 2009, Organic letters.

[222]  M. Jansen,et al.  Intermolecular forces in intercluster compounds consisting of gold clusters and fullerides and in a series of model compounds C60·2(PR3)AuCl , 2008 .

[223]  Petety V Balaji,et al.  Energetics of galactose– and glucose–aromatic amino acid interactions: Implications for binding in galactose‐specific proteins , 2004, Protein science : a publication of the Protein Society.

[224]  M. Nishio,et al.  CH/π hydrogen bonds in organic and organometallic chemistry , 2009 .

[225]  David A. Leigh,et al.  Cover Picture: Light‐Driven Transport of a Molecular Walker in Either Direction along a Molecular Track (Angew. Chem. Int. Ed. 1/2011) , 2011 .

[226]  M. Nishio,et al.  The conformation of levopimaric acid investigated by high-level ab initio MO calculations. Possibility of the CH/π hydrogen bond ☆ , 2009 .

[227]  J. Catchmark,et al.  MP2, density functional theory, and molecular mechanical calculations of C-H...pi and hydrogen bond interactions in a cellulose-binding module-cellulose model system. , 2010, Carbohydrate research.

[228]  M. Haley,et al.  C–H···π interactions inethynylbenzenes: the crystal structures of ethynylbenzene and1,3,5-triethynylbenzene, and a redetermination of the structure of1,4-diethynylbenzene , 1997 .

[229]  K. Harano,et al.  Conformation of aromatic rings in isolable atropisomers of 2-arylindoline derivatives and kinetic evidences for π–π interaction , 2010 .

[230]  C. M. Huggins,et al.  Infrared Intensity of the C — D Stretch of Chloroform‐d in Various Solvents , 1955 .

[231]  K. Baldridge,et al.  Through-space interactions between parallel-offset arenes at the van der Waals distance: 1,8-diarylbiphenylene syntheses, structure and QM computations. , 2008, Physical chemistry chemical physics : PCCP.

[232]  R. Spencer,et al.  Inter- and intramolecular isocarbon couplings of cobalt-complexed propargyl radicals: challenging the consensus , 2010 .

[233]  T. Chakraborty,et al.  Conformationally induced vibronic transitions in S0←S1 spectra of n-propylbenzene , 2003 .

[234]  M. Nishio,et al.  The Conformations of 2-Phenylpropionaldehyde and Some Aliphatic Ketones. The Possible Importance of the CH/π and CH/n Interactions in Determining the Molecular Geometry of a Mobile System , 1980 .

[235]  J. Fernández-Baeza,et al.  Straightforward generation of helical chirality driven by a versatile heteroscorpionate ligand: self-assembly of a metal helicate by using CH-pi interactions. , 2010, Chemistry.

[236]  A. Cheetham,et al.  Conformational studies of dihydrotetraphenylmethanes. 2. X-ray crystallographic and solution proton NMR studies of cis-1,4-dihydro-4-tritylbiphenyl and its 4'-bromo derivative: conformational control by an intramolecular edge-to-face aromatic interaction , 1993 .

[237]  J. Hatton,et al.  Solvent effects in the high resolution hydrogen resonance spectra of some acetylenes , 1961 .

[238]  Eun-hee Kim,et al.  New deep cavitand with imidazoquinoxaline flaps: formation of static helical alkane inclusion complexes by enhanced CH/pi interactions. , 2009, Chemical communications.

[239]  T. Martín,et al.  Quantification of a CH-pi interaction responsible for chiral discrimination and evaluation of its contribution to enantioselectivity. , 2009, Angewandte Chemie.

[240]  T. Chakraborty,et al.  Evidence for a C-H...pi type weak interaction: 1 : 1 complex of styrene with acetylene studied by mass selective high-resolution UV spectroscopy and ab initio calculations. , 2007, Physical chemistry chemical physics : PCCP.

[241]  S. Tsuzuki,et al.  Origin of the attraction in aliphatic C-H/pi interactions: infrared spectroscopic and theoretical characterization of gas-phase clusters of aromatics with methane. , 2006, The journal of physical chemistry. A.

[242]  Y. Sasidhar,et al.  MP2/6-311++G(d,p) study on galactose–aromatic residue analog complexes in different position-orientations of the saccharide relative to aromatic residue , 2007 .

[243]  Shannon M. Biros,et al.  Structure and binding properties of water-soluble cavitands and capsules. , 2007, Chemical Society reviews.

[244]  C. Massera,et al.  CH/π interaction between benzene and model neutral organic molecules bearing acid CH groups , 2002 .

[245]  Y. Fukazawa,et al.  A new self-assembling capsule via metal coordination. , 2005, Chemical communications.

[246]  J. Hildebrand,et al.  Is there a "hydrophobic effect"? , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[247]  S. Sakaki,et al.  Structures and binding energies of benzene-methane and benzene-benzene complexes : an ab initio SCF/MP2 study , 1993 .

[248]  S. Lecocq,et al.  Complexation ofp-xylene withp-isopropylcalix[4]arene: Crystal structures and thermal analysis of the empty form and the (1 : 1) and (2 : 1) complexes , 1992 .

[249]  M. Nishio,et al.  The Conformation of 1-Alkyl-2-phenylpropan-1-ols Studied by Ab Initio MO Calculations. Relevance of the CH/π and OH/π Hydrogen Bonds , 2003 .

[250]  Georg Jansen,et al.  How accurate is the density functional theory combined with symmetry-adapted perturbation theory approach for CH-pi and pi-pi interactions? A comparison to supermolecular calculations for the acetylene-benzene dimer. , 2007, Physical chemistry chemical physics : PCCP.

[251]  T. Prangé,et al.  Calix[6]tren and copper(II): a third generation of funnel complexes on the way to redox calix-zymes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[252]  S. Nayak,et al.  Directing role of functional groups in selective generation of C–H⋯π interactions: In situ cryo-crystallographic studies on benzyl derivatives , 2010 .

[253]  Kenji Kobayashi,et al.  Orientational isomerism and binding ability of nonsymmetrical guests encapsulated in a self-assembling heterodimeric capsule. , 2005, Chemistry.

[254]  M. Nishio,et al.  CH/π hydrogen bonds as evidenced in the substrate specificity of acetylcholine esterase , 2005 .

[255]  G. Cuevas,et al.  Enthalpic nature of the CH/pi interaction involved in the recognition of carbohydrates by aromatic compounds, confirmed by a novel interplay of NMR, calorimetry, and theoretical calculations. , 2009, Journal of the American Chemical Society.

[256]  M. Iyoda,et al.  All-Z-hexabenzo[24]annulene with a triangular benzene cluster substructure , 2004 .

[257]  M. N. Vyas,et al.  Sugar and signal-transducer binding sites of the Escherichia coli galactose chemoreceptor protein. , 1988, Science.

[258]  C. Massera,et al.  An integrated approach to the study of the recognition of guests containing CH3 and CH2 acidic groups by differently rigidified cone p-tert-butylcalix[4]arene derivatives , 2004 .

[259]  A. Vologzhanina,et al.  Persistent CH···π Interactions in Mefenamic Acid Complexes with Cyclic and Acyclic Amines , 2010 .

[260]  H. Ono,et al.  Characteristic conformations and molecular packings in crystal structures of diastereomeric esters prepared from ( S )-2-methoxy-2-(1-naphthyl)propanoic acid , 2008 .

[261]  Mazik,et al.  Molecular Recognition of Carbohydrates by Artificial Polypyridine and Polypyrimidine Receptors. , 2000, Angewandte Chemie.

[262]  A. Ienco,et al.  A self-assembled pyrrolic cage receptor specifically recognizes beta-glucopyranosides. , 2006, Angewandte Chemie.

[263]  T. Soós,et al.  Self‐association promoted conformational transition of (3R,4S,8R,9R)‐9‐[(3,5‐bis(trifluoromethyl)phenyl))‐thiourea](9‐deoxy)‐epi‐cinchonine , 2010, Magnetic resonance in chemistry : MRC.

[264]  K. Harata,et al.  Chemically prepared hevein domains: effect of C-terminal truncation and the mutagenesis of aromatic residues on the affinity for chitin. , 2000, Protein engineering.

[265]  J. Rebek Simultaneous encapsulation: molecules held at close range. , 2005, Angewandte Chemie.

[266]  M. Mazik,et al.  Oxime-based receptors for mono- and disaccharides. , 2007, The Journal of organic chemistry.

[267]  Sergio F. Martínez,et al.  Local MP2 Study of Naphthalene, Indole, and 2,3-Benzofuran Dimers , 2002 .

[268]  C. Tatko Sugars stack up. , 2008, Nature chemical biology.

[269]  L. Saethre,et al.  Effects of molecular conformation on inner-shell ionization energies. , 2007, Physical chemistry chemical physics : PCCP.

[270]  Y. Yamaguchi,et al.  CH/π Interaction on the Structure of N-Substituted-4-phenyltetrahydroisoquinoline Derivatives , 2010 .

[271]  M. Nishio,et al.  The CH⋯π interaction as an important factor in the crystal packing and in determining the structure of clathrates , 2001 .

[272]  M. Mazik,et al.  Highly effective receptors showing di- vs. monosaccharide preference. , 2008, Organic & biomolecular chemistry.

[273]  Y. Aoyama,et al.  Complexation of methylammonium salts and sugar-related alcohols with resorcinol cyclic tetramer in water: An implication of the CH-π interaction on polar guest binding , 1993 .

[274]  P. Chattopadhyay,et al.  An alternative to ‘propylene/Leonard linker’ for studying arene interactions in flexible pyrazolo[3,4-d]pyrimidine core based models both at molecular and supramolecular levels , 2011 .

[275]  D. Potenza,et al.  A simple model system for the study of carbohydrate--aromatic interactions. , 2007, Journal of the American Chemical Society.

[276]  George A. Koutsantonis,et al.  Purification of C60 and C70 by selective complexation with calixarenes , 1994, Nature.

[277]  Vasu,et al.  Effect of substitution on molecular conformation and packing features in a series of aryl substituted ethyl-6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylates , 2010 .

[278]  Cherumuttathu H. Suresh,et al.  Typical aromatic noncovalent interactions in proteins: A theoretical study using phenylalanine , 2009, J. Comput. Chem..

[279]  Y. Fukazawa,et al.  Guest encapsulation and self-assembly of a cavitand-based coordination capsule. , 2006, Chemistry.

[280]  J. Sühnel,et al.  C-h⋯π-interactions in proteins , 2001 .

[281]  K. Sakamoto,et al.  The Conformation of a Diastereoisomeric Pair of 2,2-Dimethyl-4-phenyl-3-pentanols , 1979 .

[282]  R. Suenram,et al.  Microwave studies of three alkylbenzenes: Ethyl, n-propyl, and n-butylbenzene , 2000 .

[283]  U. Samanta,et al.  CH/pi interaction in the packing of the adenine ring in protein structures. , 1995, Journal of molecular biology.

[284]  V. Kalchenko,et al.  Synthesis and complexation of amphiphilic calix[4]arene phosphonates with organic molecules in solutions and Langmuir-Blodgett films , 2011 .

[285]  J. Jiménez-Barbero,et al.  A chiral pyrrolic tripodal receptor enantioselectively recognizes beta-mannose and beta-mannosides. , 2010, Chemistry.

[286]  F A Quiocho,et al.  Carbohydrate-binding proteins: tertiary structures and protein-sugar interactions. , 1986, Annual review of biochemistry.

[287]  M. Mazik,et al.  Highly effective acyclic carbohydrate receptors consisting of aminopyridine, imidazole, and indole recognition units. , 2008, Chemistry.

[288]  Davis,et al.  Carbohydrate Recognition through Noncovalent Interactions: A Challenge for Biomimetic and Supramolecular Chemistry. , 1999, Angewandte Chemie.

[289]  S. Tsuzuki,et al.  Origin of attraction and directionality of the pi/pi interaction: model chemistry calculations of benzene dimer interaction. , 2002, Journal of the American Chemical Society.

[290]  A. Bagno,et al.  DFT Calculation of Intermolecular Nuclear Spin-Spin Coupling in van der Waals Dimers. , 2001, Angewandte Chemie.

[291]  G. Eglinton,et al.  1108. The ethynyl–hydrogen bond. Part II. The association of benzoylacetylene with aromatic hydrocarbons and with n-butyl ether studied by infrared and proton resonance spectroscopy and by calorimetry , 1965 .

[292]  C. A. Emeis,et al.  Low-temperature optical rotatory dispersion , 1965 .

[293]  M. Mazik,et al.  8-Hydroxyquinoline as a building block for artificial receptors: binding preferences in the recognition of glycopyranosides. , 2011, Organic & biomolecular chemistry.

[294]  P. Hobza,et al.  Infrared-optical double resonance spectroscopic measurements and high level ab initio calculations on a binary complex between phenylacetylene and borane-trimethylamine. Understanding the role of C-H...pi interactions. , 2009, Physical chemistry chemical physics : PCCP.

[295]  M. Nishio CH/π hydrogen bonds in crystals , 2004 .

[296]  N. N. Adarsh,et al.  Synthesis of mono and doubly alkynyl substituted ferrocene and its crystal engineering using –C–H···O supramolecular synthon , 2010 .

[297]  Asuka Fujii,et al.  Magnitude and nature of interactions in benzene-X (X=ethylene and acetylene) in the gas phase: significantly different CH/pi interaction of acetylene as compared with those of ethylene and methane. , 2007, The journal of physical chemistry. A.

[298]  D. Potenza,et al.  Intramolecular carbohydrate-aromatic interactions and intermolecular van der Waals interactions enhance the molecular recognition ability of GM1 glycomimetics for cholera toxin. , 2004, Chemistry.

[299]  K. Le Barbu-Debus,et al.  Chiral recognition in jet-cooled complexes of (1R,2S)-(+)-cis-1-amino-2-indanol and methyl lactate: on the importance of the CH...pi interaction. , 2009, Physical chemistry chemical physics : PCCP.

[300]  T. Soós,et al.  Edge-to-face CH/pi aromatic interaction and molecular self-recognition in epi-cinchona-based bifunctional thiourea organocatalysis. , 2008, Chemistry.

[301]  R. West,et al.  Hydrogen Bonding Studies. VI. The Hydrogen Bonding Properties of Acetylenes1 , 1961 .

[302]  E. Cabaleiro-Lago,et al.  Study of the interaction between aniline and CH3CN, CH3Cl and CH3F , 2008 .

[303]  A. P. Davis,et al.  A Synthetic Lectin Analog for Biomimetic Disaccharide Recognition , 2007, Science.

[304]  N. Ribeiro,et al.  Enantiopure cyclic O-substituted phenylphosphonothioic acid: synthesis and chirality-recognition ability. , 2011, Chirality.

[305]  Vikas Nanda,et al.  Aromatic interactions promote self-association of collagen triple-helical peptides to higher-order structures. , 2009, Biochemistry.

[306]  Eric Gagnon,et al.  Structural Features in Crystals of Derivatives of Benzene with Multiple Contiguous Phenyl Substituents , 2010 .

[307]  C. Leumann,et al.  Stable cyclohexyl-phenyl recognition in the center of a DNA duplex. , 2009, Angewandte Chemie.

[308]  B. Poh,et al.  Contribution of guest-host CH-π interaction to the stability of complexes formed from cyclotetrachromotropylene as host and alcohols and sugars as guests in water , 1993 .

[309]  J. Hašek,et al.  Role of CH/π interactions in substrate binding by Escherichia coli β-galactosidase , 2004 .

[310]  I. Karle The crystal structure of levopimaric acid, C20H30O2 , 1972 .

[311]  M. Cacciarini,et al.  A β-Mannoside-Selective Pyrrolic Tripodal Receptor , 2007 .

[312]  Hans-Jörg Schneider,et al.  Binding mechanisms in supramolecular complexes. , 2009, Angewandte Chemie.

[313]  M. Vincent,et al.  Carbohydrate-protein recognition probed by density functional theory and ab initio calculations including dispersive interactions. , 2008, Physical chemistry chemical physics : PCCP.

[314]  C. Vicent,et al.  A synthetic lectin for O-linked beta-N-acetylglucosamine. , 2009, Angewandte Chemie.

[315]  A. Fujii,et al.  A molecular cluster study on activated CH/π interactions: Infrared spectroscopy of aromatic molecule-acetylene clusters , 2004 .

[316]  Kazumasa Honda,et al.  Origin of the Attraction and Directionality of the NH/π Interaction: Comparison with OH/π and CH/π Interactions , 2000 .

[317]  Hiroki Takahashi,et al.  Low-temperature-induced reversible single-crystal-to-single-crystal phase transition of 3,4-dichloro-2′,4′,6′-triethylbenzophenone , 2010 .

[318]  Alexander D. MacKerell,et al.  CH/π interactions involving aromatic amino acids: Refinement of the CHARMM tryptophan force field , 2005, J. Comput. Chem..