Robust Performance Analysis of a Load Torque Observer for PMSM Using Singular Perturbation Theory

This paper examines the robust performance of a load torque observer for the position control of a surface-mounted permanent magnet synchronous motor (PMSM) under parameter uncertainties. The load torque observer has been widely employed to compensate for unknown slow-varying disturbances without explicit analysis on the robustness against parameter uncertainties. By using the singular perturbation theory this paper presents an analysis on the robust performance of the load torque observer based on the reduced-order estimator. As the observer poles are placed sufficiently left of the complex plane, the feedforward compensation with estimation can recover nominal system performance without parameter uncertainties and load torque disturbance. An example shows the performance of the load torque observer.