Query Modification Based on Relevance Back-Propagation in an Ad hoc Environment

It is well-known that relevance feedback is a method significant in improving the effectiveness of information retrieval systems. Improving effectiveness is important since these information retrieval systems must gain access to large document collections distributed over different distant sites. As a consequence, efforts to retrieve relevant documents have become significantly greater. Relevance feedback can be viewed as an aid to the information retrieval task. In this paper, a relevance feedback strategy is presented. The strategy is based on back-propagation of the relevance of retrieved documents using an algorithm developed in a neural approach. This paper describes a neural information retrieval model and emphasizes the results obtained with the associated relevance back-propagation algorithm in three different environments: manual ad hoc, automatic ad hoc and mixed ad hoc strategy (automatic plus manual ad hoc).

[1]  Gerard Salton,et al.  The SMART Retrieval System , 1971 .

[2]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[3]  Deborah L. McGuinness,et al.  Knowledge representation, connectionism and conceptual retrieval , 1988, SIGIR '88.

[4]  Mohand Boughanem,et al.  Query modification based on relevance backpropagation , 1997, RIAO.

[5]  James A. Reggia,et al.  Connectionist models and information retrieval , 1990 .

[6]  Hans-Peter Frei,et al.  Concept based query expansion , 1993, SIGIR.

[7]  Donna K. Harman,et al.  Overview of the Fourth Text REtrieval Conference (TREC-4) , 1995, TREC.

[8]  James Allan,et al.  Automatic Query Expansion Using SMART: TREC 3 , 1994, TREC.

[9]  Yiyu Yao,et al.  Computation of term associations by a neural network , 1993, SIGIR.

[10]  C. J. van Rijsbergen,et al.  (invited paper) A new theoretical framework for information retrieval , 1986, SIGIR '86.

[11]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[12]  Kui-Lam Kwok,et al.  TREC-5 English and Chinese Retrieval Experiments using PIRCS , 1996, TREC.

[13]  W. Bruce Croft,et al.  Evaluation of an inference network-based retrieval model , 1991, TOIS.

[14]  Ross Wilkinson,et al.  Using the cosine measure in a neural network for document retrieval , 1991, SIGIR '91.

[15]  Kui-Lam Kwok,et al.  A network approach to probabilistic information retrieval , 1995, TOIS.

[16]  Nicholas J. Belkin,et al.  SIGIR '92 : proceedings of the Fifteenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval : Copenhagen, Denmark , 1992 .

[17]  C. J. van Rijsbergen,et al.  A New Theoretical Framework for Information Retrieval , 1986, SIGIR Forum.

[18]  Stephen E. Robertson,et al.  Relevance weighting of search terms , 1976, J. Am. Soc. Inf. Sci..

[19]  Richard K. Belew,et al.  Adaptive information retrieval: using a connectionist representation to retrieve and learn about documents , 1989, SIGIR '89.

[20]  Gerard Salton,et al.  Evaluation problems in interactive information retrieval , 1969, Inf. Storage Retr..

[21]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[22]  Robert R. Korfhage,et al.  Query modification using genetic algorithms in vector space models , 1994 .

[23]  C. J. van Rijsbergen,et al.  An Evaluation of feedback in Document Retrieval using Co‐Occurrence Data , 1978, J. Documentation.

[24]  Donald H. Kraft,et al.  The use of genetic programming to build queries for information retrieval , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[25]  W. Bruce Croft,et al.  Relevance feedback and inference networks , 1993, SIGIR.

[26]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[27]  Hsinchun Chen,et al.  Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms , 1995, J. Am. Soc. Inf. Sci..

[28]  Chris Buckley,et al.  Learning routing queries in a query zone , 1997, SIGIR '97.

[29]  Michael D. Gordon Probabilistic and genetic algorithms in document retrieval , 1988, CACM.

[30]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[31]  Mohand Boughanem,et al.  Mercure at TREC6 , 1997, TREC.

[32]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .