The GRAVITY young stellar object survey

Context. Close young binary stars are unique laboratories for the direct measurement of pre-main-sequence (PMS) stellar masses and their comparison to evolutionary theoretical models. At the same time, a precise knowledge of their orbital parameters when still in the PMS phase offers an excellent opportunity for understanding the influence of dynamical effects on the morphology and lifetime of the circumstellar as well as circumbinary material. Aims. The young T Tauri star WW Cha was recently proposed to be a close binary object with strong infrared and submillimeter excess associated with circum-system emission, which makes it dynamically a very interesting source in the above context. The goal of this work is to determine the astrometric orbit and the stellar properties of WW Cha using multi-epoch interferometric observations. Methods. We derive the relative astrometric positions and flux ratios of the stellar companion in WW Cha from the interferometric model fitting of observations made with the VLTI instruments AMBER, PIONIER, and GRAVITY in the near-infrared from 2011 to 2020. For two epochs, the resulting uv-coverage in spatial frequencies permits us to perform the first image reconstruction of the system in the K band. The positions of nine epochs are used to determine the orbital elements and the total mass of the system. Combining the orbital solution with distance measurements from Gaia DR2 and the analysis of evolutionary tracks, we constrain the mass ratio. Results. We find the secondary star orbiting the primary with a period of T = 206.55 days, a semimajor axis of a = 1.01 au, and a relatively high eccentricity of e = 0.45. The dynamical mass of Mtot = 3.20 M⊙ can be explained by a mass ratio between ∼0.5 and 1, indicating an intermediate-mass T Tauri classification for both components. The orbital angular momentum vector is in close alignment with the angular momentum vector of the outer disk as measured by ALMA and SPHERE, resulting in a small mutual disk inclination. The analysis of the relative photometry suggests the presence of infrared excess surviving in the system and likely originating from truncated circumstellar disks. The flux ratio between the two components appears variable, in particular in the K band, and may hint at periods of triggered higher and lower accretion or changes in the disks’ structures. Conclusions. The knowledge of the orbital parameters, combined with a relatively short period, makes WW Cha an ideal target for studying the interaction of a close young T Tauri binary with its surrounding material, such as time-dependent accretion phenomena. Finding WW Cha to be composed of two (probably similar) stars led us to reevaluate the mass of WW Cha, which had been previously derived under the assumption of a single star. This work illustrates the potential of long baseline interferometry to precisely characterize close young binary stars separated by a few astronomical units. Finally, when combined with radial velocity measurements, individual stellar masses can be derived and used to calibrate theoretical PMS models.

European Southern Observatory | Faculdade de Engenharia | P. T. de Zeeuw | T. Paumard | L. Jocou | Dublin Institute for Advanced Studies | School of Physics | CNRS | Universidade do Porto | University of California | PSL Research University | K. Perraut | G. Duvert | A. Amorim | A. Eckart | R. Genzel | P. Kervella | S. Gillessen | G. Perrin | C. Straubmeier | Z. Hubert | L. Labadie | J. Woillez | F. Eisenhauer | F. Widmann | E. Gendron | Astronomy Department | University of Vienna | W. Brandner | C. Dougados | O. Pfuhl | University College Dublin | T. Ott | E. Sturm | LESIA | V. Lapeyrere | A. Caratti o Garatti | O. Straub | IPAG | S. Lacour | Instituto Superior T'ecnico | B. Lazareff | G. Perrin | P. Caselli | G. Rousset | T. Henning | W. Brandner | S. Lacour | W. Thi | T. Ray | J. Berger | G. Duvert | A. Eckart | E. Gendron | R. Genzel | Observatoire de Paris | F. Eisenhauer | T. Paumard | P. Kervella | K. Perraut | M. Benisty | R. Grellmann | L. Labadie | S. Gillessen | T. Ott | E. Sturm | H. Linz | C. Dougados | F. Gao | M. Horrobin | J. Le Bouquin | A. Bik | Unidad Mixta Internacional Franco-Chilena de Astronom'ia | M. Benisty | R. Kohler | Max Planck Institute for Astronomy | J. P. Berger | F. Vincent | V. Coud'e du Foresto | Department of Astrophysics | S. Hippler | P. T. de Zeeuw | E. V. van Dishoeck | Universidad de Chile | M. Baubock | P. Garcia | F. Gao | M. Horrobin | A. Jim'enez-Rosales | T. Shimizu | R. Garcia Lopez | L. Klarmann | J. Sanchez-Bermudez | R. Grellmann | J. Shangguan | J. Stadler | L. Jocou | A. Amorim | P. Garcia | J. Shangguan | S. Scheithauer | J. Stadler | O. Straub | C. Straubmeier | F. Vincent | F. Widmann | V. Coudé du Foresto | Y. Cl'enet | P. Gordo | P. L'ena | J. Sanchez-Bermudez | J. B. Le Bouquin | Sterrewacht Leiden | L. Klarmann | A. Caratti o Garatti | M. Koutoulaki | Universidad Nacional Aut'onoma de M'exico | Universitat zu Koln | CENTRA | Instituto de Astronom'ia | Departamento de Astronom'ia | Max Planck Institute for Extraterrestrial Physics | G. Duchene | G. Heissel | G. Rousset | R. Garcia Lopez | GRAVITY Collaboration F. Eupen | P. Caselli | Y. Cl'enet | A. Drescher | M. Filho | V. Ganci | Th. Henning | P. L'ena | G. Rodr'iguez-Coira | S. Scheithauer | E. van Dishoeck | S. D. von Fellenberg | A. Wojtczak I. Physikalisches Institut | Univ. Grenoble Alpes | Centro de Astrof'isica e Gravitaccao | Max-Planck-Institute for Radio Astronomy | Universidade de Lisboa - Faculdade de Ciencias | Leiden University | R. Fedriani

[1]  D. Padgett,et al.  Observations of edge-on protoplanetary disks with ALMA , 2020, Astronomy & Astrophysics.

[2]  T. Ray,et al.  Mirror, mirror on the outflow cavity wall , 2020, 2001.00369.

[3]  Sascha P. Quanz,et al.  Disks around T Tauri Stars with SPHERE (DARTTS-S). I. SPHERE/IRDIS Polarimetric Imaging of Eight Prominent T Tauri Disks , 2018, The Astrophysical Journal.

[4]  A. Tielens,et al.  Probing planet formation and disk substructures in the inner disk of Herbig Ae stars with CO rovibrational emission , 2019, Astronomy & Astrophysics.

[5]  University College Dublin,et al.  Exploring the dimming event of RW Aurigae A through multi-epoch VLT/X-shooter spectroscopy , 2019, Astronomy & Astrophysics.

[6]  F. Ménard,et al.  The newborn planet population emerging from ring-like structures in discs , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  Julien H. Girard,et al.  SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.

[8]  R. Abuter,et al.  The GRAVITY fringe tracker , 2019, Astronomy & Astrophysics.

[9]  J. Szulágyi,et al.  High-resolution ALMA Observations of HD 100546: Asymmetric Circumstellar Ring and Circumplanetary Disk Upper Limits , 2018, The Astrophysical Journal.

[10]  Zhaohuan Zhu,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). II. Characteristics of Annular Substructures , 2018, The Astrophysical Journal.

[11]  Luca Ricci,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). VII. The Planet–Disk Interactions Interpretation , 2018, The Astrophysical Journal.

[12]  Rafael Millan-Gabet,et al.  Probing the Inner Disk Emission of the Herbig Ae Stars HD 163296 and HD 190073 , 2018, The Astrophysical Journal.

[13]  F. Ménard,et al.  Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region , 2018, The Astrophysical Journal.

[14]  M. Langlois,et al.  Evolution of protoplanetary disks from their taxonomy in scattered light: spirals, rings, cavities, and shadows , 2018, Astronomy & Astrophysics.

[15]  M. Benisty,et al.  Evidence for a massive dust-trapping vortex connected to spirals , 2018, Astronomy & Astrophysics.

[16]  A. Boccaletti,et al.  High-contrast study of the candidate planets and protoplanetary disk around HD 100546 , 2018, Astronomy & Astrophysics.

[17]  R. Oudmaijer,et al.  Gaia DR2 study of Herbig Ae/Be stars , 2018, Astronomy & Astrophysics.

[18]  S. Hinkley,et al.  A Multi-instrument and Multi-wavelength High Angular Resolution Study of MWC 614: Quantum Heated Particles Inside the Disk Cavity , 2018, 1803.02419.

[19]  M. Langlois,et al.  Dust modeling of the combined ALMA and SPHERE datasets of HD 163296 , 2018, Astronomy & Astrophysics.

[20]  S. Mohanty,et al.  Inside-out Planet Formation. V. Structure of the Inner Disk as Implied by the MRI , 2017, The Astrophysical Journal.

[21]  J. Monnier,et al.  Linking Signatures of Accretion with Magnetic Field Measurements–Line Profiles are not Significantly Different in Magnetic and Non-magnetic Herbig Ae/Be Stars , 2017, 1711.04636.

[22]  J. Szulágyi,et al.  New constraints on the disk characteristics and companion candidates around T Chamaeleontis with VLT/SPHERE , 2017, 1705.03477.

[23]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[24]  B. Ercolano,et al.  The dispersal of planet-forming discs: theory confronts observations , 2017, Royal Society Open Science.

[25]  T. Fusco,et al.  Testing giant planet formation in the transitional disk of SAO 206462 using deep VLT/SPHERE imaging , 2017, 1702.05108.

[26]  L. Hartmann,et al.  THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). II. DISTANCES AND STRUCTURE TOWARD THE ORION MOLECULAR CLOUDS , 2016, The Astrophysical Journal.

[27]  F. Ménard,et al.  Cavity and other radial substructures in the disk around HD 97048 , 2016, 1609.02488.

[28]  M. Benisty,et al.  3D Radiation Nonideal Magnetohydrodynamical Simulations of the Inner Rim in Protoplanetary Disks , 2016, 1612.02740.

[29]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[30]  T. Fusco,et al.  Shadows and spirals in the protoplanetary disk HD 100453 , 2016, 1610.10089.

[31]  H. Shibai,et al.  SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527 , 2016, 1610.06318.

[32]  Julien H. Girard,et al.  Multiple rings in the transition disk and companion candidates around RX J1615.3-3255. High contrast imaging with VLT/SPHERE , 2016, 1610.04038.

[33]  Julien H. Girard,et al.  Direct detection of scattered light gaps in the transitional disk around HD 97048 with VLT/SPHERE , 2016, 1609.04027.

[34]  U. A. D. Madrid,et al.  VORTICES AND SPIRALS IN THE HD 135344B TRANSITION DISK , 2016, 1607.05775.

[35]  Olivier Chesneau,et al.  Pseudomagnitudes and Differential Surface Brightness: Application to the apparent diameter of stars , 2016, 1604.07700.

[36]  M. Benisty,et al.  RADIATION HYDRODYNAMICS MODELS OF THE INNER RIM IN PROTOPLANETARY DISKS , 2016, 1604.04601.

[37]  Firenze,et al.  Accretion disks in luminous young stellar objects , 2015, 1509.08335.

[38]  J. Fairlamb,et al.  A spectroscopic survey of Herbig Ae/Be stars with X-shooter – I. Stellar parameters and accretion rates , 2015, 1507.05967.

[39]  Timothy A. Davis,et al.  THE 2014 ALMA LONG BASELINE CAMPAIGN: AN OVERVIEW , 2015 .

[40]  C. Waelkens,et al.  The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps , 2015, 1506.03274.

[41]  D. Mouillet,et al.  Asymmetric features in the protoplanetary disk MWC 758 , 2015, 1505.05325.

[42]  Stefan Kraus,et al.  The interferometric view of Herbig Ae/Be stars , 2015 .

[43]  Simon J. E. Radford,et al.  AN OVERVIEW OF THE 2014 ALMA LONG BASELINE CAMPAIGN , 2015, 1504.04877.

[44]  Jonathan P. Williams,et al.  PROTOPLANETARY DISK MASSES IN THE YOUNG NGC 2024 CLUSTER , 2015, 1501.06512.

[45]  S. Casassus,et al.  SHADOWS CAST BY A WARP IN THE HD 142527 PROTOPLANETARY DISK , 2014, 1412.4632.

[46]  Sascha P. Quanz,et al.  STRUCTURES IN THE PROTOPLANETARY DISK OF HD142527 SEEN IN POLARIZED SCATTERED LIGHT , 2013, 1311.7088.

[47]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[48]  M. Min,et al.  Identifying gaps in flaring Herbig Ae/Be disks using spatially resolved mid-infrared imaging - Are all group I disks transitional? , 2013, 1305.3138.

[49]  S. Lumsden,et al.  CO bandhead emission of massive young stellar objects: determining disc properties , 2012, 1212.0554.

[50]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[51]  A. Königl,et al.  A DISK-WIND MODEL FOR THE NEAR-INFRARED EXCESS EMISSION IN PROTOSTARS , 2012, 1207.1508.

[52]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[53]  Philip J. Armitage,et al.  Dynamics of Protoplanetary Disks , 2010, 1011.1496.

[54]  M. Min,et al.  DUST EVOLUTION IN PROTOPLANETARY DISKS AROUND HERBIG Ae/Be STARS—THE SPITZER VIEW , 2010, 1008.0083.

[55]  J. D. Monnier,et al.  The Inner Regions of Protoplanetary Disks , 2010, 1006.3485.

[56]  C. Dullemond,et al.  TIME EVOLUTION OF VISCOUS CIRCUMSTELLAR DISKS DUE TO PHOTOEVAPORATION BY FAR-ULTRAVIOLET, EXTREME-ULTRAVIOLET, AND X-RAY RADIATION FROM THE CENTRAL STAR , 2009, 0909.1836.

[57]  C. Dominik,et al.  The inner rim structures of protoplanetary discs , 2009, 0908.1692.

[58]  A. Richichi,et al.  Tracing the potential planet-forming regions around seven pre-main-sequence stars , 2009, 0905.0565.

[59]  H. McAlister,et al.  Strong Near-Infrared Emission Interior to the Dust Sublimation Radius of Young Stellar Objects MWC 275 and AB Aurigae , 2008, 0803.1484.

[60]  F. Ménard,et al.  The Inner Radius of T Tauri Disks Estimated from Near-Infrared Interferometry: The Importance of Scattered Light , 2007, 0712.0012.

[61]  C. Haniff An introduction to the theory of interferometry , 2007 .

[62]  Romain G. Petrov,et al.  Near-infrared interferometry of eta Carinae with spectral resolutions of 1 500 and 12 000 using AMBER/VLTI , 2007 .

[63]  U. Exeter,et al.  The Inner Rim of YSO Disks: Effects of Dust Grain Evolution , 2007, astro-ph/0702044.

[64]  D. Vinkovic,et al.  Relation between the Luminosity of Young Stellar Objects and Their Circumstellar Environment , 2006, astro-ph/0612039.

[65]  Immo Appenzeller,et al.  Star-disk interaction in young stars : proceedings of the 243th symposium of the International Astronomical Union held in Grenoble, France, May 21-25, 2007 , 2007 .

[66]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[67]  W. Traub,et al.  Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars , 2006, astro-ph/0606052.

[68]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[69]  Ž. Ivezić,et al.  Near-Infrared and the Inner Regions of Protoplanetary Disks , 2005, astro-ph/0506154.

[70]  A. Isella,et al.  The shape of the inner rim in proto-planetary disks , 2005, astro-ph/0503635.

[71]  C. Dominik,et al.  A 10 μm spectroscopic survey of Herbig Ae star disks: Grain growth and crystallization , 2005, astro-ph/0503507.

[72]  J. D. Monnier,et al.  The Near-Infrared Size-Luminosity Relations for Herbig Ae/Be Disks , 2005, astro-ph/0502252.

[73]  National Optical Astronomy Observatory,et al.  Accretion Signatures from Massive Young Stellar Objects , 2004, Proceedings of the International Astronomical Union.

[74]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[75]  W. Thi,et al.  Evidence for an inner molecular disk around massive Young Stellar Objects , 2004, astro-ph/0410098.

[76]  Belgium,et al.  The peculiar circumstellar environment of NGC 2024 IRS2 , 2003, astro-ph/0310262.

[77]  C. Dominik,et al.  Passive Irradiated Circumstellar Disks with an Inner Hole , 2001, astro-ph/0106470.

[78]  Vincent Mannings,et al.  A reconsideration of disk properties in Herbig Ae stars , 2001 .

[79]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[80]  J. Bouwman,et al.  ISO spectroscopy of circumstellar dust in 14 Herbig Ae/Be systems: Towards an understanding of dust processing , 2000, astro-ph/0012295.

[81]  W. Traub,et al.  Spatially Resolved Circumstellar Structure of Herbig Ae/Be Stars in the Near-Infrared , 2000, astro-ph/0008072.

[82]  E. Chiang,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[83]  J. Carlstrom,et al.  Infrared CO Emission from Young Stars: Accretion Disks and Neutral Winds , 1995 .

[84]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[85]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[86]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[87]  B. Brown Proceedings of the Society of Photo-optical Instrumentation Engineers, Seminar-in-depth, 'Solving Problems in Security, Surveillance and Law Enforcement with Optical Instrumentation' , 1974 .

[88]  Institiúid Ard-Léinn,et al.  Dublin Institute for Advanced Studies , 2018, Nature.