SiC sensors: a review

Silicon carbide has attracted considerable attention in recent years as a potential material for sensor devices. This paper reviews the current status of SiC technology for a wide range of sensor applications. It is shown that SiC MEMs devices are well-established with operational devices demonstrated at high temperatures (up to 500 °C) for the sensing of motion, acceleration and gas flow. SiC sensors devices using electrical properties as the sensing mechanism have also been demonstrated principally for gas composition and radiation detection and have wide potential use in scientific, medical and combustion monitoring applications.

[1]  J. Hunziker Potassium Argon Dating , 1979 .

[2]  Darrin J. Young,et al.  Single crystal 6H-SiC MEMS fabrication based on smart-cut technique , 2005 .

[3]  M. Carreño,et al.  Self-sustained bridges of a-SiC:H films obtained by PECVD at low temperatures for MEMS applications , 2004 .

[4]  Ingemar Lundström,et al.  Using a MISiCFET device as a cold start sensor , 2003 .

[5]  S. Aslam,et al.  4H-SiC UV photo detectors with large area and very high specific detectivity , 2004, IEEE Journal of Quantum Electronics.

[6]  Ingemar Lundström,et al.  Response of metal-oxide-silicon carbide sensors to simulated and real exhaust gases , 1997 .

[7]  G. Chung Wafer bonding characteristics for 3C-SiC-on-insulator structures using PECVD oxide , 2004 .

[8]  P. Godignon SiC Materials and Technologies for Sensors Development , 2005 .

[9]  Mehran Mehregany,et al.  SiC MEMS: Opportunities and challenges for applications in harsh environments , 1999 .

[10]  Mehran Mehregany,et al.  Development of a Multilayer SiC Surface Micromachining Process with Capabilities and Design Rules Comparable to Conventional Polysilicon Surface Micromachining , 2002 .

[11]  C. Carraro,et al.  Recent progress toward a manufacturable polycrystalline SiC surface micromachining technology , 2004, IEEE Sensors Journal.

[12]  Mats Eriksson,et al.  Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen‐sensitive field‐effect devices: Observation of large hydrogen‐induced dipoles at the Pd‐SiO2 interface , 1995 .

[13]  G. B. Dalrymple,et al.  Potassium-Argon Dating: Principles, Techniques and Applications to Geochronology , 1969 .

[14]  Manijeh Razeghi,et al.  Short-wavelength solar-blind detectors-status, prospects, and markets , 2002, Proc. IEEE.

[15]  M. Mehregany,et al.  Surface micromachining of polycrystalline SiC films using microfabricated molds of SiO/sub 2/ and polysilicon , 1999 .

[16]  Roger T. Howe,et al.  A low-temperature CVD process for silicon carbide MEMS , 2002 .

[17]  A. Berns,et al.  Thermal analysis of silicon carbide based micro hotplates for metal oxide gas sensors , 2005 .

[18]  M. Mehregany,et al.  Polycrystalline 3C-SiC thin films deposited by dual precursor LPCVD for MEMS applications , 2005 .

[19]  Jian H. Zhao,et al.  Development of Ultra High Sensitivity UV Silicon Carbide Detectors , 2006 .

[20]  D. E. Yates,et al.  Site-binding model of the electrical double layer at the oxide/water interface , 1974 .

[21]  Investigations on the possibilities of a MISiCFET sensor system for OBD and combustion control utilizing different catalytic gate materials , 2004 .

[22]  Ingemar Lundström,et al.  Chemical Sensors with Catalytic Metal Gates Switching Behavior and Kinetic Phase Transitions , 1998 .

[23]  C. Jacob,et al.  Selective epitaxy and lateral overgrowth of 3C-SiC on Si – A review , 2005 .

[24]  W.H. Ko,et al.  Silicon-carbide MESFET-based 400/spl deg/C MEMS sensing and data telemetry , 2005, IEEE Sensors Journal.

[25]  P. Sarro,et al.  Fabrication of a CMOS compatible pressure sensor for harsh environments , 2004 .

[26]  H. Wingbrant,et al.  MISiCFET Chemical Gas Sensors for High Temperature and Corrosive Environment Applications , 2002 .

[27]  Mehran Mehregany,et al.  Silicon carbide MEMS for harsh environments , 1998, Proc. IEEE.

[28]  Michael S. Shur,et al.  SiC materials and devices , 2006 .

[29]  D. Lim,et al.  Deposition of epitaxial silicon carbide films using high vacuum MOCVD method for MEMS applications , 2004 .

[30]  P. Baxter,et al.  Atmospheric dispersion, environmental effects and potential health hazard associated with the low-altitude gas plume of Masaya volcano, Nicaragua , 2002 .

[31]  Gary W. Hunter,et al.  SiC-Based Gas Sensor Development , 2000 .

[32]  M. Mehregany,et al.  Fabrication and testing of micromachined silicon carbide and nickel fuel atomizers for gas turbine engines , 1999 .

[33]  Matthias Hein,et al.  Micro-electromechanical systems based on 3C-SiC/Si heterostructures , 2005 .

[34]  M. Shur,et al.  Sic Materials and Devices: Volume 2 , 2007 .

[35]  G. Bertuccio,et al.  Possibility of Subelectron Noise With Room-Temperature Silicon Carbide Pixel Detectors , 2006, IEEE Transactions on Nuclear Science.

[36]  A. Fleischman,et al.  Behaviour of Polycrystalline SiC and Si Surface-Micromachined Lateral Resonant Structures at Elevated Temperatures , 1997 .

[37]  Yu Wang,et al.  Study on a PECVD SiC-coated pressure sensor , 2007 .

[38]  R. Maboudian,et al.  Bonding characteristics of 3C-SiC wafers with hydrofluoric acid for high-temperature MEMS applications , 2005 .

[39]  Kevin T. Kornegay,et al.  Simulation, fabrication and testing of bulk micromachined 6H-SiC high-g piezoresistive accelerometers , 2003 .

[40]  Study on the applications of SiC thin films to MEMS techniques through a fabrication process of cantilevers , 2005 .

[41]  Ingemar Lundström,et al.  High Temperature Sensors Based on Metal–Insulator–Silicon Carbide Devices , 1997 .

[42]  L. Darken,et al.  High-Purity Germanium Technology for Gamma-Ray and X-Ray Spectroscopy , 1993 .

[43]  M. Shur,et al.  SiC materials and devices , 2006 .

[44]  A. McGonigle Volcano remote sensing with ground-based spectroscopy , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Vladimir P. Zhdanov,et al.  Catalytic ignition in the COO2 reaction on platinum: experiment and simulations , 1997 .

[46]  John P. R. David,et al.  Low-noise visible-blind UV avalanche photodiodes with edge terminated by 2/spl deg/ positive bevel , 2002 .

[47]  R. Ghosh,et al.  Interface states in high-temperature gas sensors based on silicon carbide , 2003 .

[48]  I. Lundstrom,et al.  Evaluation of on-line flue gas measurements by MISiCFET and metal-oxide sensors in boilers , 2005, IEEE Sensors Journal.

[49]  G. Bertuccio,et al.  Silicon carbide for high resolution X-ray detectors operating up to 100°C☆ , 2004 .

[50]  Ingemar Lundström,et al.  Influence of carbon monoxide, water and oxygen on high temperature catalytic metal-oxide-silicon carbide structures , 1997 .

[51]  Gerhard Müller,et al.  Response mechanism of SiC-based MOS field-effect gas sensors , 2002 .

[52]  Bo Yang,et al.  Low dark current 4H-SiC avalanche photodiodes , 2003 .

[53]  B. J. Baliga Silicon Carbide Power Devices , 2005 .

[54]  H. Wingbrant,et al.  MISiCFET Chemical Sensors for Applications in Exhaust Gases and Flue Gases , 2003 .

[55]  Shuvo Roy,et al.  Fabrication and characterization of polycrystalline SiC resonators , 2002 .

[56]  L. Hobbs,et al.  Characterization of Si and CVD SiC to Glass Anodic Bonding Using TEM and STEM Analysis , 2005 .

[57]  J. Anderegg,et al.  Ultra-short pulsed laser deposition and patterning of SiC thin films for MEMS fabrication , 2005 .

[58]  Adrian Powell,et al.  SiC materials-progress, status, and potential roadblocks , 2002, Proc. IEEE.

[59]  M. Schulz,et al.  Degradation of 6H-SiC MOS capacitors operated at high temperatures , 1999 .

[60]  C. Carter,et al.  Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC , 1993 .

[61]  J. Hoffman,et al.  Pioneer Venus Sounder Probe Neutral Gas Mass Spectrometer , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[62]  A. O'Neill,et al.  Structural pattern formation in titanium–nickel contacts on silicon carbide following high-temperature annealing , 2006 .

[63]  Pasqualina M. Sarro,et al.  Silicon carbide as a new MEMS technology , 2000 .

[64]  M. Mehregany,et al.  Fabrication of hall device structures in 3C-SiC using microelectromechanical processing technology , 2006 .

[65]  G. Kale,et al.  Novel high-selectivity NO2 sensor incorporating mixed-oxide electrode , 2006 .

[66]  Inspec,et al.  Properties of silicon carbide , 1995 .

[67]  A. Spetz,et al.  Hydrogen and ammonia response of metal‐silicon dioxide‐silicon structures with thin platinum gates , 1988 .