LOCAL EXACT CONTROLLABILITY TO THE TRAJECTORIES OF THE BOUSSINESQ SYSTEM VIA A FICTITIOUS CONTROL ON THE DIVERGENCE EQUATION

In this paper, we deal with the three-dimensional Boussinesq sys- tem. We prove the local exact controllability to the trajectories of this system when the control is supported in a small set. The main objective of this paper is to present a new method to control systems associated to equations of ∞uid dynamics. This method consists of controlling the same system with an additional control acting on the divergence condition in a flrst step and lifting this condition in a second step. In this paper, we have chosen to apply this technique to the Boussinesq system.

[1]  Oleg Yu. Imanuvilov,et al.  Controllability of Evolution equations , 1996 .

[2]  V. Tikhomirov,et al.  Optimal Control , 1987 .

[3]  J. Puel,et al.  Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems , 2002 .

[4]  Sergio Guerrero,et al.  Local exact controllability to the trajectories of the Boussinesq system , 2006 .

[5]  E. Fernández-Cara,et al.  Global Carleman estimates for solutions of parabolic systems defined by transposition and some applications to controllability , 2006 .

[6]  E. Trélat,et al.  Controllability of partial differential equations , 2006 .

[7]  Yoshikazu Giga,et al.  Abstract LP estimates for the Cauchy problem with applications to the Navier‐Stokes equations in exterior domains , 1991 .

[8]  Sergio Guerrero,et al.  Local exact controllability of the Navier-Stokes system ✩ , 2004 .

[9]  Andrei V. Fursikov,et al.  Local exact controllability of the Navier-Stokes equations , 1996 .

[10]  W. Borchers,et al.  On the equations rot v=g and div u=f with zero boundary conditions , 1990 .

[11]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[12]  J. Lions,et al.  Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles , 1968 .

[13]  Jean-Pierre Puel,et al.  Approximate controllability of the semilinear heat equation , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Oleg Yu. Imanuvilov,et al.  Remarks on exact controllability for the Navier-Stokes equations , 2001 .

[15]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[16]  Andrei V. Fursikov,et al.  Exact controllability of the Navier-Stokes and Boussinesq equations , 1999 .

[17]  Sergio Guerrero,et al.  SOME CONTROLLABILITY RESULTS FOR THE N -DIMENSIONAL NAVIER-STOKES AND BOUSSINESQ SYSTEMS WITH N − 1 , 2006 .

[18]  E. Zuazua Controllability of Partial Differential Equations , 2006 .