TelePOVM - A generalized quantum teleportation scheme

In this paper, we show that quantum teleportation is a special case of a generalized Einstein--Podolsky--Rosen (EPR) nonlocality. On the basis of the connection between teleportation and generalized measurements, we define conclusive teleportation. We show that perfect conclusive teleportation can be obtained with any pure entangled state, and it can be arbitrarily approached with a particular mixed state.

[1]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[2]  A Tale of Two Cities , 1998, Science.

[3]  Tal Mor,et al.  Teleportation via generalized measurements, and conclusive teleportation , 1999 .

[4]  A. Peres How to differentiate between non-orthogonal states , 1988 .

[5]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[6]  Gilles Brassard,et al.  Teleportation as a quantum computation , 1998 .

[7]  Popescu,et al.  Bell's inequalities versus teleportation: What is nonlocality? , 1994, Physical review letters.

[8]  Ekert,et al.  Eavesdropping on quantum-cryptographical systems. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[10]  N. Gisin Hidden quantum nonlocality revealed by local filters , 1996 .

[11]  Peter W. Shor,et al.  Quantum Information Theory , 1998, IEEE Trans. Inf. Theory.

[12]  Mann,et al.  Maximal violation of Bell inequalities for mixed states. , 1992, Physical review letters.

[13]  TelePOVM -- New Faces of Teleportation , 1996, quant-ph/9608005.

[14]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[15]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[16]  M. Horodecki,et al.  General teleportation channel, singlet fraction and quasi-distillation , 1998, quant-ph/9807091.

[17]  N. Gisin Stochastic quantum dynamics and relativity , 1989 .

[18]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[20]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[21]  S. Massar,et al.  Purifying Noisy Entanglement Requires Collective Measurements , 1998, quant-ph/9805001.

[22]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[23]  N. Gisin Nonlocality criteria for quantum teleportation , 1996 .

[24]  Reinder Nijho,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 2005 .

[25]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[26]  Biham,et al.  Quantum cryptographic network based on quantum memories. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[27]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[28]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[29]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  C. Helstrom Quantum detection and estimation theory , 1969 .

[31]  W. Wootters,et al.  Optimal detection of quantum information. , 1991, Physical review letters.