A calcaneus attributable to the primitive late Eocene anthropoid Proteopithecus sylviae: phenetic affinities and phylogenetic implications.

A well-preserved calcaneus referrable to Proteopithecus sylviae from the late Eocene Quarry L-41 in the Fayum Depression, Egypt, provides new evidence relevant to this taxon's uncertain phylogenetic position. We assess morphological affinities of the new specimen using three-dimensional geometric morphometric analyses with a comparative sample of primate calcanei representing major extinct and extant radiations (n = 58 genera, 106 specimens). Our analyses reveal that the calcaneal morphology of Proteopithecus is most similar to that of the younger Fayum parapithecid Apidium. Principal components analysis places Apidium and Proteopithecus in an intermediate position between primitive euprimates and crown anthropoids, based primarily on landmark configurations corresponding to moderate distal elongation, a more distal position of the peroneal tubercle, and a relatively "unflexed" calcaneal body. Proteopithecus and Apidium are similar to cercopithecoids and some omomyiforms in having an ectal facet that is more tightly curved, along with a larger degree of proximal calcaneal elongation, whereas other Fayum anthropoids, platyrrhines and adapiforms have a more open facet with less proximal elongation. The similarity to cercopithecoids is most plausibly interpreted as convergence given the less tightly curved ectal facets of stem catarrhines. The primary similarities between Proteopithecus and platyrrhines are mainly in the moderate distal elongation and the more distal position of the peroneal tubercle, both of which are not unique to these groups. Proteopithecus and Apidium exhibit derived anthropoid features, but also a suite of primitive retentions. The calcaneal morphology of Proteopithecus is consistent with our cladistic analysis, which places proteopithecids as a sister group of Parapithecoidea.

[1]  D. Gebo Locomotor and phylogenetic considerations in anthropoid evolution , 1989 .

[2]  Y. Attia,et al.  Additional remains of Wadilemur elegans, a primitive stem galagid from the late Eocene of Egypt. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[4]  E. Simons,et al.  A partial skeleton of Proteopithecus sylviae (Primates, Anthropoidea): first associated dental and postcranial remains of an Eocene anthropoidean , 1999 .

[5]  V. Lazzari,et al.  Late Middle Eocene primate from Myanmar and the initial anthropoid colonization of Africa , 2012, Proceedings of the National Academy of Sciences.

[6]  K. Beard,et al.  New Sivaladapid Primates from the Eocene Pondaung Formation of Myanmar and the Anthropoid Status of Amphipithecidae , 2007 .

[7]  A. Jacobson,et al.  Morphometric tools for landmark data , 1993 .

[8]  S. Cooke,et al.  New endemic platyrrhine femur from Haiti: description and locomotor analysis. , 2012, Journal of human evolution.

[9]  M. Dagosto Models for the origin of the anthropoid postcranium , 1990 .

[10]  M. Kraus,et al.  Geology and paleoenvironment of the Oligocene Jebel Qatrani Formation and adjacent rocks, Fayum Depression, Egypt , 1988 .

[11]  Lauren B. Halenar Reconstructing the Locomotor Repertoire of Protopithecus brasiliensis. II. Forelimb Morphology , 2011, Anatomical record.

[12]  D. Gebo,et al.  Postcranial Anatomy and the Origin of the Anthropoidea , 1994 .

[13]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[14]  C. Ward,et al.  Function, phylogeny, and fossils : miocene hominoid evolution and adaptations , 1997 .

[15]  M. Rose Functional and Phylogenetic Features of the Forelimb in Miocene Hominoids , 1997 .

[16]  E. Simons,et al.  Morphology and locomotor adaptations of the foot in early Oligocene anthropoids. , 1987, American journal of physical anthropology.

[17]  Bernd Hamann,et al.  Evolutionary morphing , 2005, VIS 05. IEEE Visualization, 2005..

[18]  C. Ross,et al.  Anthropoid Origins: A Phylogenetic Analysis , 2004 .

[19]  E. Simons,et al.  Skeletal remains of Propliopithecus chirobates from the Egyptian Oligocene. , 1982, Folia primatologica; international journal of primatology.

[20]  M. Drapeau Articular morphology of the proximal ulna in extant and fossil hominoids and hominins. , 2008, Journal of human evolution.

[21]  Elizabeth H. Harmon Size and shape variation in the proximal femur of Australopithecus africanus. , 2009, Journal of human evolution.

[22]  J. Fleagle Locomotor Adaptations of Oligocene and Miocene Hominoids and Their Phyletic Implications , 1983 .

[23]  M. Rose,et al.  Quadrupedalism in some Miocene catarrhines , 1994 .

[24]  E. Simons,et al.  Eocene Anthropoid Postcrania from the Eayum, Egypt , 1994 .

[25]  E. Simons,et al.  Dentition of Proteopithecus sylviae, an archaic anthropoid from the Fayum, Egypt. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  E. Simons,et al.  A fossil primate of uncertain affinities from the earliest late Eocene of Egypt , 2010, Proceedings of the National Academy of Sciences.

[27]  D. Gebo Anthropoid origins—the foot evidence† , 1986 .

[28]  Tao Qi,et al.  The oldest known anthropoid postcranial fossils and the early evolution of higher primates , 2000, Nature.

[29]  M. Dagosto Implications of postcranial evidence for the origin of euprimates , 1988 .

[30]  Lauren B. Halenar,et al.  Reconstructing the Locomotor Repertoire of Protopithecus brasiliensis. I. Body Size , 2011, Anatomical record.

[31]  John H. Langdon,et al.  Functional morphology of the Miocene hominoid foot , 1986 .

[32]  T. Setoguchi,et al.  New fossil materials of the earliest new world monkey, Branisella boliviana, and the problem of platyrrhine origins. , 2000, American journal of physical anthropology.

[33]  M. Benammi,et al.  A new primate from the Middle Eocene of Myanmar and the Asian early origin of anthropoids. , 1999, Science.

[34]  Nathan M. Young A comparison of the ontogeny of shape variation in the anthropoid scapula: functional and phylogenetic signal. , 2008, American journal of physical anthropology.

[35]  E. Sarmiento,et al.  The significance of the heel process in anthropoids , 1983, International Journal of Primatology.

[36]  David M. Alba,et al.  Calcaneal proportions in primates and locomotor inferences in Anchomomys and other Palaeogene Euprimates , 2011, Swiss Journal of Palaeontology.

[37]  E. Simons,et al.  Astragalar morphology of Afradapis, a large adapiform primate from the earliest late Eocene of Egypt. , 2010, American journal of physical anthropology.

[38]  Elizabeth Strasser,et al.  Pedal evidence for the origin and diversification of cercopithecid clades , 1988 .

[39]  K. Beard,et al.  Middle Eocene primate tarsals from China: implications for haplorhine evolution. , 2001, American journal of physical anthropology.

[40]  E. Simons,et al.  Ape limb bone from the oligocene of Egypt. , 1975, Science.

[41]  E. Simons Preliminary description of the cranium of Proteopithecus sylviae, an Egyptian late Eocene anthropoidean primate. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  E. Simons,et al.  Anthropoid humeri from the late Eocene of Egypt. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  David F. Wiley,et al.  Analysis of Selected Hominoid Joint Surfaces Using Laser Scanning and Geometric Morphometrics: A Preliminary Report , 2008 .

[44]  F. Szalay,et al.  8 – Origins, Evolution, and Function of the Tarsus in Late Cretaceous Eutheria and Paleocene Primates , 1974 .

[45]  E. Seiffert,et al.  Evidence for a convergent slowdown in primate molecular rates and its implications for the timing of early primate evolution , 2012, Proceedings of the National Academy of Sciences.

[46]  F. Rohlf Paleontological Data Analysis , 2007 .

[47]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[48]  S. M. Ford A systematic revision of the Platyrrhini based on features of the postcranium , 1980 .

[49]  Fred L. Bookstein,et al.  Morphometric Tools for Landmark Data. , 1998 .

[50]  E. Simons,et al.  Astragalar morphology of late Eocene anthropoids from the Fayum Depression (Egypt) and the origin of catarrhine primates. , 2001, Journal of human evolution.

[51]  J. M. Lynch,et al.  Morphometrics and hominoid phylogeny: Support for a chimpanzee-human clade and differentiation among great ape subspecies. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Sahni,et al.  Early Eocene primates from Gujarat, India. , 2009, Journal of human evolution.

[53]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[54]  E. Simons,et al.  New primate first metatarsals from the Paleogene of Egypt and the origin of the anthropoid big toe. , 2012, Journal of human evolution.

[55]  B. Williams,et al.  Phylogenetic analysis of anthropoid relationships. , 1998, Journal of human evolution.

[56]  L. Marivaux,et al.  Anthropoid primates from the Oligocene of Pakistan (Bugti Hills): data on early anthropoid evolution and biogeography. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  E. Simons,et al.  Evolution of locomotion in Anthropoidea: the semicircular canal evidence , 2012, Proceedings of the Royal Society B: Biological Sciences.

[58]  D. Gebo Foot morphology and locomotor adaptation in Eocene primates. , 1988, Folia primatologica; international journal of primatology.

[59]  E. Simons,et al.  Description of two genera and species of late Eocene Anthropoidea from Egypt. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[60]  E. Simons,et al.  Convergent evolution of anthropoid-like adaptations in Eocene adapiform primates , 2009, Nature.

[61]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[62]  Elizabeth H Harmon,et al.  The shape of the hominoid proximal femur: a geometric morphometric analysis , 2007, Journal of anatomy.

[63]  Christopher C. Gilbert,et al.  Phylogenetic analysis of the African papionin basicranium using 3-D geometric morphometrics: the need for improved methods to account for allometric effects. , 2011, American journal of physical anthropology.

[64]  E. Simons,et al.  Phylogenetic, Biogeographic, and Adaptive Implications of New Fossil Evidence Bearing on Crown Anthropoid Origins and Early Stem Catarrhine Evolution , 2004 .

[65]  R. F. Kay Evidence for an Asian origin of stem anthropoids , 2012, Proceedings of the National Academy of Sciences.

[66]  E. Seiffert Early primate evolution in Afro‐Arabia , 2012, Evolutionary anthropology.

[67]  S. O’Brien,et al.  A Molecular Phylogeny of Living Primates , 2011, PLoS genetics.

[68]  Tao Qi,et al.  A diverse new primate fauna from middle Eocene fissure-fillings in southeastern China , 1994, Nature.

[69]  S. M. Ford,et al.  Postcranial adaptations of the earliest platyrrhine , 1988 .

[70]  Xijun Ni,et al.  New primate hind limb elements from the middle Eocene of China. , 2008, Journal of human evolution.

[71]  Y. Attia,et al.  Basal Anthropoids from Egypt and the Antiquity of Africa's Higher Primate Radiation , 2005, Science.

[72]  Sunil Bajpai,et al.  The oldest Asian record of Anthropoidea , 2008, Proceedings of the National Academy of Sciences.

[73]  J. Gower Generalized procrustes analysis , 1975 .

[74]  G. Livesay,et al.  Geometric morphometric analyses of hominid proximal femora: taxonomic and phylogenetic considerations. , 2010, Homo : internationale Zeitschrift fur die vergleichende Forschung am Menschen.

[75]  Melissa Tallman Morphology of the Distal Radius in Extant Hominoids and Fossil Hominins: Implications for the Evolution of Bipedalism , 2012, Anatomical record.

[76]  E. Seiffert,et al.  Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman. , 2006, Proceedings of the National Academy of Sciences of the United States of America.