TimeNotes: A Study on Effective Chart Visualization and Interaction Techniques for Time-Series Data

Collecting sensor data results in large temporal data sets which need to be visualized, analyzed, and presented. One-dimensional time-series charts are used, but these present problems when screen resolution is small in comparison to the data. This can result in severe over-plotting, giving rise for the requirement to provide effective rendering and methods to allow interaction with the detailed data. Common solutions can be categorized as multi-scale representations, frequency based, and lens based interaction techniques. In this paper, we comparatively evaluate existing methods, such as Stack Zoom [15] and ChronoLenses [38], giving a graphical overview of each and classifying their ability to explore and interact with data. We propose new visualizations and other extensions to the existing approaches. We undertake and report an empirical study and a field study using these techniques.

[1]  Jarke J. van Wijk,et al.  Cushion Treemaps: Visualization of Hierarchical Information , 1999, INFOVIS.

[2]  A. Treisman Perceptual grouping and attention in visual search for features and for objects. , 1982, Journal of experimental psychology. Human perception and performance.

[3]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[4]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[5]  Niklas Elmqvist,et al.  Stack Zooming for Multifocus Interaction in Skewed-Aspect Visual Spaces , 2013, IEEE Transactions on Visualization and Computer Graphics.

[6]  Eamonn J. Keogh,et al.  Visualizing and Discovering Non-Trivial Patterns in Large Time Series Databases , 2005, Inf. Vis..

[7]  Robert Kincaid,et al.  SignalLens: Focus+Context Applied to Electronic Time Series , 2010, IEEE Transactions on Visualization and Computer Graphics.

[8]  Steven K. Feiner,et al.  Relaxed selection techniques for querying time-series graphs , 2009, UIST '09.

[9]  Wolfgang Jank,et al.  Similarity-Based Forecasting with Simultaneous Previews: A River Plot Interface for Time Series Forecasting , 2007, 2007 11th International Conference Information Visualization (IV '07).

[10]  Daniel A. Keim,et al.  Multi-Resolution Techniques for Visual Exploration of Large Time-Series Data , 2007, EuroVis.

[11]  E. Shepard Identification of animal movement patterns using tri-axial accelerometry , 2008 .

[12]  Rory P. Wilson,et al.  Trends and perspectives in animal‐attached remote sensing , 2005 .

[13]  Emmanuel Pietriga,et al.  Exploratory Analysis of Time-Series with ChronoLenses , 2011, IEEE Transactions on Visualization and Computer Graphics.

[14]  Matthew O. Ward,et al.  Interactive Data Visualization - Foundations, Techniques, and Applications , 2010 .

[15]  Alan M. MacEachren,et al.  How Maps Work - Representation, Visualization, and Design , 1995 .

[16]  Tamara Munzner,et al.  Visualization Analysis and Design , 2014, A.K. Peters visualization series.

[17]  Ben Shneiderman,et al.  Interactive pattern search in time series , 2005, IS&T/SPIE Electronic Imaging.

[18]  Robert S. Laramee,et al.  TimeClassifier: a visual analytic system for the classification of multi-dimensional time series data , 2015, The Visual Computer.

[19]  Daniel A. Keim,et al.  Importance-driven visualization layouts for large time series data , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[20]  Tovi Grossman,et al.  A model of navigation for very large data views , 2013, Graphics Interface.

[21]  Ben Shneiderman,et al.  Image-Browser Taxonomy and Guidelines for Designers , 2003 .

[22]  Robert S. Laramee,et al.  Smooth Graphs for Visual Exploration of Higher-Order State Transitions , 2009, IEEE Transactions on Visualization and Computer Graphics.

[23]  Niklas Elmqvist,et al.  Graphical Perception of Multiple Time Series , 2010, IEEE Transactions on Visualization and Computer Graphics.

[24]  Robert S. Laramee,et al.  Visualisation of Sensor Data from Animal Movement , 2009, Comput. Graph. Forum.

[25]  Daniel A. Keim,et al.  Mastering the Information Age - Solving Problems with Visual Analytics , 2010 .

[26]  B. Marx The Visual Display of Quantitative Information , 1985 .

[27]  Niklas Elmqvist,et al.  Stack zooming for multi-focus interaction in time-series data visualization , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[28]  C. Pennycuick,et al.  Speeds and wingbeat frequencies of migrating birds compared with calculated benchmarks. , 2001, The Journal of experimental biology.

[29]  Rita Borgo,et al.  Order of Magnitude Markers: An Empirical Study on Large Magnitude Number Detection , 2014, IEEE Transactions on Visualization and Computer Graphics.

[30]  Eamonn J. Keogh,et al.  Exact indexing of dynamic time warping , 2002, Knowledge and Information Systems.

[31]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[32]  Manish Marwah,et al.  Visual exploration of frequent patterns in multivariate time series , 2012, Inf. Vis..

[33]  Robert Kincaid,et al.  Line graph explorer: scalable display of line graphs using Focus+Context , 2006, AVI '06.

[34]  Tamara Munzner,et al.  TopoLayout: Multilevel Graph Layout by Topological Features , 2007, IEEE Transactions on Visualization and Computer Graphics.

[35]  Harald Reiterer,et al.  Does (multi-)touch aid users' spatial memory and navigation in 'panning' and in 'zooming & panning' UIs? , 2012, AVI.

[36]  Pierre Dragicevic,et al.  A Study on Dual-Scale Data Charts , 2011, IEEE Transactions on Visualization and Computer Graphics.

[37]  Tamara Munzner,et al.  LiveRAC: interactive visual exploration of system management time-series data , 2008, CHI.