Large nanoscale electronic conductivity in complex oxide heterostructures with ultra high electron density

We study the two-dimensional electron gas at the interface of NdTiO3 and SrTiO3 to reveal its nanoscale transport properties. At electron densities approaching 1015 cm−2, our terahertz spectroscopy data show conductivity levels that are up to six times larger than those extracted from DC electrical measurements. Moreover, the largest conductivity enhancements are observed in samples intentionally grown with larger defect densities. This is a signature of electron transport over the characteristic length-scales typically probed by electrical measurements being significantly affected by scattering by structural defects introduced during growth, and, a trait of a much larger electron mobility at the nanoscale.

[1]  D. Esseni,et al.  Electron transport in 2D crystal semiconductors and their device applications , 2014, 2014 Silicon Nanoelectronics Workshop (SNW).

[2]  J. Mannhart,et al.  Oxide electronics: Interface takes charge over Si. , 2011, Nature materials.

[3]  D. Basov,et al.  Infrared Studies of the Onset of Conductivity in Ultrathin Pb Films , 1999, cond-mat/9905036.

[4]  P. Sushko,et al.  Quasi 2D Ultrahigh Carrier Density in a Complex Oxide Broken‐Gap Heterojunction , 2016 .

[5]  C. M. Folkman,et al.  Correction: Corrigendum: Creation of a two-dimensional electron gas at an oxide interface on silicon , 2010, Nature Communications.

[6]  C. Hellberg,et al.  Electron pairing without superconductivity , 2015, Nature.

[7]  David G. Cooke,et al.  Transient terahertz conductivity in photoexcited silicon nanocrystal films , 2006 .

[8]  P. Bøggild,et al.  Graphene conductance uniformity mapping. , 2012, Nano letters.

[9]  Xi Chen,et al.  Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO3 , 2012 .

[10]  Young Heon Kim,et al.  Polarity-tunable magnetic tunnel junctions based on ferromagnetism at oxide heterointerfaces , 2015, Nature Communications.

[11]  Harold Y. Hwang,et al.  Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface , 2011 .

[12]  Akira Ohtomo,et al.  A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , 2004, Nature.

[13]  Akira Ohtomo,et al.  Artificial charge-modulationin atomic-scale perovskite titanate superlattices , 2002, Nature.

[14]  Peter Bøggild,et al.  Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe. , 2014, Nano letters.

[15]  S. Stemmer,et al.  Two-dimensional electron liquid at the (111) SmTiO3/SrTiO3 interface , 2015 .

[16]  Masashi Kawasaki,et al.  Quantum Hall Effect in Polar Oxide Heterostructures , 2007, Science.

[17]  Bharat Jalan,et al.  Stoichiometry-driven metal-to-insulator transition in NdTiO3/SrTiO3 heterostructures , 2014 .

[18]  J. Mannhart,et al.  Tunable Quasi-Two-Dimensional Electron Gases in Oxide Heterostructures , 2006, Science.

[19]  D. Muller,et al.  Why some interfaces cannot be sharp , 2005, cond-mat/0510491.

[20]  Bjarke S. Jessen,et al.  Graphene mobility mapping , 2015, Scientific Reports.

[21]  P. Xiong,et al.  Enhancement of superconductivity by a parallel magnetic field in two-dimensional superconductors , 2011 .

[22]  M. Tinkham Energy Gap Interpretation of Experiments on Infrared Transmission through Superconducting Films , 1956 .

[23]  B. T. McDermott,et al.  Influence of surface processing and passivation on carrier concentrations and transport properties in AlGaN/GaN heterostructures , 2001 .

[24]  H. Hwang,et al.  BASIC NOTIONS , 2022 .

[25]  Ajay Nahata,et al.  A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling , 1996 .

[26]  D. Jena,et al.  Broadband graphene terahertz modulators enabled by intraband transitions , 2012, Nature Communications.

[27]  P. Meissner,et al.  Precisely tunable continuous-wave terahertz source with interferometric frequency control. , 2008, The Review of scientific instruments.

[28]  N. Reyren,et al.  Superconducting Interfaces Between Insulating Oxides , 2007, Science.

[29]  Masashi Kawasaki,et al.  Electric-field-induced superconductivity in an insulator. , 2008, Nature materials.

[30]  K. Ganguly,et al.  Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films , 2013 .

[31]  U Zeitler,et al.  Magnetic effects at the interface between non-magnetic oxides. , 2007, Nature materials.

[32]  M. Tonouchi,et al.  Time-Domain Terahertz Spectroscopy of (100) (LaAlO3)0.3-(Sr2AlTaO6)0.7 Substrate , 2001 .

[33]  Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures , 2011 .

[34]  Philippe Ghosez,et al.  Interface Physics in Complex Oxide Heterostructures , 2011 .

[35]  Siddharth Rajan,et al.  Electrostatic carrier doping of GdTiO3/SrTiO3 interfaces , 2011 .