Meshless analysis of shear deformable shells: boundary and interface constraints

[1]  Isaac Harari,et al.  A unified approach for embedded boundary conditions for fourth‐order elliptic problems , 2015 .

[2]  Isaac Harari,et al.  A robust Nitsche's formulation for interface problems with spline‐based finite elements , 2015 .

[3]  Yujie Guo,et al.  Weak Dirichlet boundary conditions for trimmed thin isogeometric shells , 2015, Comput. Math. Appl..

[4]  Luís A.G. Bitencourt,et al.  A coupling technique for non-matching finite element meshes , 2015 .

[5]  M. Ruess,et al.  A layerwise isogeometric approach for NURBS-derived laminate composite shells , 2015 .

[6]  Martin Ruess,et al.  Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures , 2015 .

[7]  P. Pimenta,et al.  Meshless implementation of the geometrically exact Kirchhoff–Love shell theory , 2014 .

[8]  P. Pimenta,et al.  On the boundary conditions of the geometrically nonlinear Kirchhoff–Love shell theory , 2014 .

[9]  Ernst Rank,et al.  Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries , 2014 .

[10]  Vinh Phu Nguyen,et al.  Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.

[11]  John E. Dolbow,et al.  A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces , 2013 .

[12]  J. Costa,et al.  Meshless analysis of shear deformable shells: the linear model , 2013 .

[13]  Y. Bazilevs,et al.  Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method , 2013 .

[14]  Isaac Harari,et al.  Embedded kinematic boundary conditions for thin plate bending by Nitsche's approach , 2012 .

[15]  John E. Dolbow,et al.  Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods , 2012 .

[16]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[17]  J. Dolbow,et al.  Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .

[18]  Antonio Huerta,et al.  OPTIMALLY CONVERGENT HIGH-ORDER X-FEM FOR PROBLEMS WITH VOIDS AND INCLUSIONS , 2012 .

[19]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[20]  Isaac Harari,et al.  Analysis of an efficient finite element method for embedded interface problems , 2010 .

[21]  E. Campello,et al.  Shell curvature as an initial deformation: A geometrically exact finite element approach , 2009 .

[22]  Tod A. Laursen,et al.  On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .

[23]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[24]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[25]  Dongdong Wang,et al.  A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates , 2006 .

[26]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .

[27]  Antonio Huerta,et al.  Continuous blending of SPH with finite elements , 2005 .

[28]  B. Wohlmuth,et al.  A comparison of mortar and Nitsche techniques for linear elasticity , 2004 .

[29]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[30]  Wing Kam Liu,et al.  A comparison of two formulations to blend finite elements and mesh-free methods , 2004 .

[31]  Peter Wriggers,et al.  A triangular finite shell element based on a fully nonlinear shell formulation , 2003 .

[32]  Michael Griebel,et al.  A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .

[33]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[34]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[35]  Antonio Huerta,et al.  Enrichment and coupling of the finite element and meshless methods , 2000 .

[36]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[37]  Hirohisa Noguchi,et al.  Element free analyses of shell and spatial structures , 2000 .

[38]  Not Available Not Available Meshfree particle methods , 2000 .

[39]  W. Hao,et al.  Numerical simulations of large deformation of thin shell structures using meshfree methods , 2000 .

[40]  Ted Belytschko,et al.  EFG approximation with discontinuous derivatives , 1998 .

[41]  Brian Moran,et al.  Treatment of material discontinuity in the Element-Free Galerkin method , 1996 .

[42]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[43]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[44]  Ted Belytschko,et al.  Enforcement of essential boundary conditions in meshless approximations using finite elements , 1996 .

[45]  Ted Belytschko,et al.  A coupled finite element-element-free Galerkin method , 1995 .

[46]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[47]  Ted Belytschko,et al.  Element-free Galerkin method for wave propagation and dynamic fracture , 1995 .

[48]  T. Belytschko,et al.  A new implementation of the element free Galerkin method , 1994 .

[49]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[50]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[51]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part II: the linear theory; computational aspects , 1989 .

[52]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .