A Hierarchical Bayesian Multidimensional Scaling Methodology for Accommodating Both Structural and Preference Heterogeneity

Multidimensional scaling (MDS) models for the analysis of dominance data have been developed in the psychometric and classification literature to simultaneously capture subjects’ preference heterogeneity and the underlying dimensional structure for a set of designated stimuli in a parsimonious manner. There are two major types of latent utility models for such MDS models that have been traditionally used to represent subjects’ underlying utility functions: the scalar product or vector model and the ideal point or unfolding model. Although both models have been widely applied in various social science applications, implicit in the assumption of such MDS methods is that all subjects are homogeneous with respect to their underlying utility function; i.e., they all follow a vector model or an ideal point model. We extend these traditional approaches by presenting a Bayesian MDS model that combines both the vector model and the ideal point model in a generalized framework for modeling metric dominance data. This new Bayesian MDS methodology explicitly allows for mixtures of the vector and the ideal point models thereby accounting for both preference heterogeneity and structural heterogeneity. We use a marketing application regarding physicians’ prescription behavior of antidepressant drugs to estimate and compare a variety of spatial models.

[1]  L. Wasserman,et al.  Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .

[2]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[3]  Jaewun Cho,et al.  A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data , 1989 .

[4]  H. Simon,et al.  A Behavioral Model of Rational Choice , 1955 .

[5]  R. Rust,et al.  Model selection criteria: an investigation of relative accuracy, posterior probabilities, and combinations of criteria , 1995 .

[6]  R. Kohli,et al.  Probabilistic Subset-Conjunctive Models for Heterogeneous Consumers , 2005 .

[7]  M. F. Luce,et al.  Constructive Consumer Choice Processes , 1998 .

[8]  V. Rao,et al.  GENFOLD2: A set of models and algorithms for the general UnFOLDing analysis of preference/dominance data , 1984 .

[9]  A. Raftery,et al.  Bayesian Multidimensional Scaling and Choice of Dimension , 2001 .

[10]  R. Bagozzi Advanced Methods of Marketing Research , 1994 .

[11]  Z. Griliches,et al.  Pharmaceutical Innovations and Market Dynamics: Tracking Effects on Price Indexes for Antidepressant Drugs , 1996 .

[12]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[13]  J. Rosenthal,et al.  Markov Chain Monte Carlo Methods , 2006 .

[14]  Franziska Marquart,et al.  Communication and persuasion : central and peripheral routes to attitude change , 1988 .

[15]  H. Simon,et al.  Invariants of human behavior. , 1990, Annual review of psychology.

[16]  P. Green,et al.  Corrigendum: On Bayesian analysis of mixtures with an unknown number of components , 1997 .

[17]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[18]  T. Palva,et al.  Pages 1-19 , 2001 .

[19]  C. Coombs A theory of data. , 1965, Psychology Review.

[20]  R. A. Harshman,et al.  Data preprocessing and the extended PARAFAC model , 1984 .

[21]  P. Groenen,et al.  Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation , 2005 .

[22]  Forrest W. Young Multidimensional Scaling: History, Theory, and Applications , 1987 .

[23]  David J. Spiegelhalter,et al.  Introducing Markov chain Monte Carlo , 1995 .

[24]  John Liechty,et al.  Dynamic Models Incorporating Individual Heterogeneity: Utility Evolution in Conjoint Analysis , 2005 .

[25]  Wayne S. DeSarbo,et al.  Evolutionary preference/utility functions: A dynamic perspective , 2005 .

[26]  Wayne S. DeSarbo,et al.  A Constrained Unfolding Methodology for Product Positioning , 1986 .

[27]  Willem J. Heiser,et al.  Interpreting degenerate solutions in unfolding by use of the vector model and the compensatory distance model , 2005 .

[28]  W. DeSarbo,et al.  Three-way metric unfolding via alternating weighted least squares , 1985 .

[29]  Eric T. Bradlow,et al.  The Little Engines That Could: Modeling the Performance of World Wide Web Search Engines , 2000 .

[30]  Allan D. Shocker,et al.  A Customer-oriented Approach for Determining Market Structures , 1984 .

[31]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[32]  Michel Wedel,et al.  An Exponential-Family Multidimensional Scaling Mixture Methodology , 1996 .

[33]  W. DeSarbo,et al.  A Bayesian Multidimensional Scaling Procedure for the Spatial Analysis of Revealed Choice Data , 1998 .

[34]  M. Menza STAR*D: the results begin to roll in. , 2006, The American journal of psychiatry.

[35]  William B. Michael,et al.  Psychological Scaling: Theory and Applications , 1961 .

[36]  W. Kamakura,et al.  Modeling Preference and Structural Heterogeneity in Consumer Choice , 1996 .

[37]  Wayne S. DeSarbo,et al.  Latent Class Multidimensional Scaling. A Review of Recent Developments in the Marketing and Psychometric Literature , 1994 .

[38]  R. Belk Situational Variables and Consumer Behavior , 1975 .

[39]  W. DeSarbo,et al.  An exponential family mixture MDS methodology for simultaneous segmentation and product positioning , 1996 .

[40]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[41]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[42]  Wayne S. DeSarbo,et al.  A Bayesian Approach to the Spatial Representation of Market Structure from Consumer Choice Data , 1998, Eur. J. Oper. Res..

[43]  H. Law Research methods for multimode data analysis , 1984 .

[44]  A. Tversky,et al.  Loss Aversion in Riskless Choice: A Reference-Dependent Model , 1991 .

[45]  R. Belk An Exploratory Assessment of Situational Effects in Buyer Behavior , 1974 .

[46]  Roger N. Shepard,et al.  Multidimensional scaling : theory and applications in the behavioral sciences , 1974 .

[47]  W. DeSarbo,et al.  A Parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research , 1997 .

[48]  Patrick Slater,et al.  THE ANALYSIS OF PERSONAL PREFERENCES , 1960 .

[49]  S. James Press,et al.  Subjective and Objective Bayesian Statistics , 2002 .

[50]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[51]  C. Robert,et al.  Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .

[52]  M. Wedel,et al.  Market Segmentation: Conceptual and Methodological Foundations , 1997 .

[53]  Greg M. Allenby,et al.  A Choice Model with Conjunctive, Disjunctive, and Compensatory Screening Rules , 2004 .

[54]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .