Classification of osseointegrated implant surfaces: materials, chemistry and topography.

Since the founding of the osseointegration concept, the characteristics of the interface between bone and implant, and possible ways to improve it, have been of particular interest in dental and orthopaedic implant research. Making use of standardized tools of analysis and terminology, we present here a standardized characterization code for osseointegrated implant surfaces. This code describes the chemical composition of the surface, that is, the core material, such as titanium, and its chemical or biochemical modification through impregnation or coating. This code also defines the physical surface features, at the micro- and nanoscale, such as microroughness, microporosity, nanoroughness, nanotubes, nanoparticles, nanopatterning and fractal architecture. This standardized classification system will allow to clarify unambiguously the identity of any given osseointegrated surface and help to identify the biological outcomes of each surface characteristic.

[1]  T. Albrektsson,et al.  Qualitative and quantitative observations of bone tissue reactions to anodised implants. , 2002, Biomaterials.

[2]  Lyndon F Cooper,et al.  The effects of implant surface nanoscale features on osteoblast-specific gene expression. , 2009, Biomaterials.

[3]  Y. Sul,et al.  The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. , 2003, Biomaterials.

[4]  M. Morra,et al.  Surface chemistry effects of topographic modification of titanium dental implant surfaces: 1. Surface analysis. , 2003, The International journal of oral & maxillofacial implants.

[5]  M. Janal,et al.  Biomechanical and histomorphometric evaluation of a thin ion beam bioceramic deposition on plateau root form implants: an experimental study in dogs. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[6]  Finn Skou Pedersen,et al.  The use of combinatorial topographical libraries for the screening of enhanced osteogenic expression and mineralization. , 2009, Biomaterials.

[7]  M. Kern,et al.  Osseointegration and clinical success of zirconia dental implants: a systematic review. , 2008, The International journal of prosthodontics.

[8]  L. Weidenhielm,et al.  Stepwise introduction of a bone-conserving osseointegrated hip arthroplasty using RSA and a randomized study: I. Preliminary investigations—52 patients followed for 3 years , 2006, Acta orthopaedica.

[9]  M. Monjo,et al.  In vivo expression of osteogenic markers and bone mineral density at the surface of fluoride-modified titanium implants. , 2008, Biomaterials.

[10]  A. Wennerberg,et al.  Surface characterization of commercial oral implants on the nanometer level. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[11]  Paulo G. Coelho,et al.  Removal Torque and Histomorphometric Evaluation of Bioceramic Grit-Blasted/Acid-Etched and Dual Acid-Etched Implant Surfaces: An Experimental Study in Dogs , 2008 .

[12]  T Albrektsson,et al.  The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. , 2001, Medical engineering & physics.

[13]  C. Wilkinson,et al.  Osteoprogenitor response to defined topographies with nanoscale depths. , 2006, Biomaterials.

[14]  C. Cassinelli,et al.  Effect of titanium implant surface nanoroughness and calcium phosphate low impregnation on bone cell activity in vitro. , 2010, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[15]  T. Albrektsson,et al.  XPS, AES and SEM analysis of recent dental implants. , 2009, Acta biomaterialia.

[16]  T. Albrektsson,et al.  Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. , 2006, The International journal of prosthodontics.

[17]  P. Coelho,et al.  Early healing of nanothickness bioceramic coatings on dental implants. An experimental study in dogs. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[18]  Rickard Brånemark,et al.  Forearm bone-anchored amputation prosthesis: A case study on the osseointegration , 2008, Acta orthopaedica.

[19]  T. Albrektsson,et al.  Effects of titanium surface topography on bone integration: a systematic review. , 2009, Clinical oral implants research.

[20]  A. Stoica,et al.  Power-law scaling and fractal nature of medium-range order in metallic glasses. , 2009, Nature materials.

[21]  P. Branemark,et al.  Osseointegration of titanium implants. , 1986, Acta orthopaedica Scandinavica.

[22]  M. Morra,et al.  Covalently‐linked hyaluronan promotes bone formation around Ti implants in a rabbit model , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[23]  Lars Sennerby,et al.  State of the art of oral implants. , 2008, Periodontology 2000.

[24]  M. Morra,et al.  Biomolecular modification of implant surfaces , 2007, Expert review of medical devices.

[25]  F. Rosei,et al.  Nanoscale oxidative patterning of metallic surfaces to modulate cell activity and fate. , 2009, Nano letters.

[26]  M. Ferrari,et al.  Modulating cellular adhesion through nanotopography. , 2010, Biomaterials.

[27]  Yunzhi Yang,et al.  A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying. , 2005, Biomaterials.

[28]  James H Brown,et al.  The fractal nature of nature: power laws, ecological complexity and biodiversity. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[29]  T. Albrektsson,et al.  Osteoinduction, osteoconduction and osseointegration , 2001, European Spine Journal.

[30]  T. Albrektsson,et al.  Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. , 2002, Biomaterials.

[31]  Tomas Albrektsson,et al.  The bone response of oxidized bioactive and non-bioactive titanium implants. , 2005, Biomaterials.

[32]  I. Hochmair-Desoyer,et al.  A Bone-Anchored Percutaneous Connector System for Neural Prosthetic Applications , 1997, Ear, nose, & throat journal.

[33]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.

[34]  M. Morra Biochemical modification of titanium surfaces: peptides and ECM proteins. , 2006, European cells & materials.

[35]  R. Brånemark,et al.  Characterization of the surface properties of commercially available dental implants using scanning electron microscopy, focused ion beam, and high-resolution transmission electron microscopy. , 2008, Clinical implant dentistry and related research.

[36]  Tomas Albrektsson,et al.  Stepwise introduction of a bone-conserving osseointegrated hip arthroplasty using RSA and a randomized study: II. Clinical proof of concept—40 patients followed for 2 years , 2006, Acta orthopaedica.

[37]  M. Morra,et al.  Surface chemistry effects of topographic modification of titanium dental implant surfaces: 2. In vitro experiments. , 2003, The International journal of oral & maxillofacial implants.

[38]  T Albrektsson,et al.  Suggested guidelines for the topographic evaluation of implant surfaces. , 2000, The International journal of oral & maxillofacial implants.

[39]  M. Morra,et al.  Modulating in vitro bone cell and macrophage behavior by immobilized enzymatically tailored pectins. , 2008, Journal of Biomedical Materials Research. Part A.

[40]  Ann Wennerberg,et al.  Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. , 2004, The International journal of prosthodontics.

[41]  Jan E Ellingsen,et al.  The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. , 2009, Biomaterials.

[42]  M. Morra,et al.  Collagen I-coated titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. , 2006, Journal of biomedical materials research. Part A.

[43]  F. Pezzetti,et al.  Anatase Coating Improves Implant Osseointegration In Vivo , 2007, The Journal of craniofacial surgery.

[44]  P. Coelho,et al.  Physico/chemical characterization and in vivo evaluation of nanothickness bioceramic depositions on alumina-blasted/acid-etched Ti-6Al-4V implant surfaces. , 2009, Journal of biomedical materials research. Part A.

[45]  T. Albrektsson,et al.  Gothenburg osseointegrated hip arthroplasty. Experience with a novel type of hip design. , 1998, Clinical orthopaedics and related research.

[46]  Lars Rasmusson,et al.  Titanium dioxide nanotubes enhance bone bonding in vivo. , 2009, Journal of biomedical materials research. Part A.

[47]  A. Wennerberg,et al.  A novel characteristic of porous titanium oxide implants. , 2007, Clinical oral implants research.

[48]  R M Pilliar,et al.  The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. , 1980, Clinical orthopaedics and related research.

[49]  J. Granjeiro,et al.  Basic research methods and current trends of dental implant surfaces. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[50]  R. Oreffo,et al.  Osteoprogenitor response to semi-ordered and random nanotopographies. , 2006, Biomaterials.

[51]  T. Albrektsson,et al.  Oral implant surfaces: Part 2--review focusing on clinical knowledge of different surfaces. , 2004, The International journal of prosthodontics.

[52]  Lyndon F Cooper,et al.  Advancing dental implant surface technology--from micron- to nanotopography. , 2008, Biomaterials.

[53]  A. Wennerberg,et al.  Surface characteristics of electrochemically oxidized implants and acid-etched implants: surface chemistry, morphology, pore configurations, oxide thickness, crystal structure, and roughness. , 2008, The International journal of oral & maxillofacial implants.

[54]  T Albrektsson,et al.  Current interpretations of the osseointegrated response: clinical significance. , 1993, The International journal of prosthodontics.

[55]  Wei Zhou,et al.  The anatase phase of nanotopography titania plays an important role on osteoblast cell morphology and proliferation , 2008, Journal of materials science. Materials in medicine.

[56]  T. Albrektsson,et al.  Long-term results of a cementless knee prosthesis with a metal-backed patellar component: clinical and radiological follow-up with histology from retrieved components. , 2003, Journal of long-term effects of medical implants.

[57]  T. Albrektsson,et al.  The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. , 2012, Clinical implant dentistry and related research.

[58]  J. Wazen,et al.  Osseointegration Timing for Baha System Loading , 2007, The Laryngoscope.

[59]  S. Bauer,et al.  Bioactivation of titanium surfaces using coatings of TiO(2) nanotubes rapidly pre-loaded with synthetic hydroxyapatite. , 2009, Acta biomaterialia.

[60]  T. Albrektsson,et al.  The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. , 2009, Journal of biomedical materials research. Part A.

[61]  J. Davies,et al.  Discrete calcium phosphate nanocrystalline deposition enhances osteoconduction on titanium-based implant surfaces. , 2009, Journal of biomedical materials research. Part A.

[62]  A. Nanci,et al.  Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. , 2007, Journal of biomedical materials research. Part A.