Unified modal analysis of complex cable systems via extended dynamic stiffness method and enhanced computation

[1]  Robert D. Rodman,et al.  Algorithm 196: Muller's method for finding roots of an abitrary function , 1963, Commun. ACM.

[2]  Zhuangpeng Yi,et al.  In-plane non-linear dynamics of the stay cables , 2013 .

[3]  Michael S. Triantafyllou,et al.  Linear dynamics of cables and chains , 1984 .

[4]  Danhui Dan,et al.  Exact dynamic characteristic analysis of a double-beam system interconnected by a viscoelastic layer , 2019, Composites Part B: Engineering.

[5]  Giuseppe Rega,et al.  Nonlinear vibrations of suspended cables—Part I: Modeling and analysis , 2004 .

[6]  S. Timoshenko,et al.  X. On the transverse vibrations of bars of uniform cross-section , 1922 .

[7]  D. Dan,et al.  Universal Characteristic Frequency Equation for Cable Transverse Component System and Its Universal Numerical Solution , 2016 .

[8]  J. R. Banerjee,et al.  Dynamic stiffness formulation for structural elements: A general approach , 1997 .

[9]  T. Huang,et al.  The Effect of Rotatory Inertia and of Shear Deformation on the Frequency and Normal Mode Equations of Uniform Beams With Simple End Conditions , 1961 .

[10]  Felix Weber,et al.  Optimal semi-active damping of cables : evolutionary algorithms and closed-form solutions , 2009 .

[11]  S. Krenk,et al.  DAMPING OF CABLES BY A TRANSVERSE FORCE , 2005 .

[12]  Hongxing Hua,et al.  Coupled bending and torsional vibration of axially loaded thin-walled Timoshenko beams , 2004 .

[13]  J. R. Banerjee,et al.  Exact dynamic stiffness matrix of a bending-torsion coupled beam including warping , 1996 .

[14]  G. B. Warburton,et al.  Transmission of vibration in beam systems , 1969 .

[15]  R. L. Webster,et al.  Literature Review : Current Methods for Analyzing Dynamic Cable Response 1979 To the Present , 1982 .

[16]  G. Carrier,et al.  On the non-linear vibration problem of the elastic string , 1945 .

[17]  Alan I. Soler,et al.  Dynamic response of single cables with initial sag , 1970 .

[18]  David S. Saxon,et al.  MODES OF VIBRATION OF A SUSPENDED CHAIN , 1953 .

[19]  A. Pugsley,et al.  ON THE NATURAL FREQUENCIES OF SUSPENSION CHAINS , 1949 .

[20]  Nicholas P. Jones,et al.  Vibration of Tensioned Beams with Intermediate Damper. II: Damper Near a Support , 2007 .

[21]  Han Fei,et al.  Analysis on the dynamic characteristic of a tensioned double-beam system with a semi theoretical semi numerical method , 2018 .

[22]  S. Casciati,et al.  Human induced vibration vs. cable-stay footbridge deterioration , 2016 .

[23]  Habib Tabatabai,et al.  DESIGN OF MECHANICAL VISCOUS DAMPERS FOR STAY CABLES , 2000 .

[24]  F. W. Williams,et al.  A GENERAL ALGORITHM FOR COMPUTING NATURAL FREQUENCIES OF ELASTIC STRUCTURES , 1971 .

[25]  W. H. Wittrick,et al.  An automatic computational procedure for calculating natural frequencies of skeletal structures , 1970 .

[26]  H. B. Jayaraman,et al.  A curved element for the analysis of cable structures , 1981 .

[27]  Bengt Å. Åkesson,et al.  Discussion of “Exact Buckling and Frequency Calculations Surveyed” by Frederic W. Williams and William H. Wittrick (January, l983) , 1984 .

[28]  A. Simpson Determination of the inplane natural frequencies of multispan transmission lines by a transfer-matrix method , 1966 .

[29]  G. Rega,et al.  Experimental Investigation of the Nonlinear Response of a Hanging Cable. Part II: Global Analysis , 1997 .

[30]  Yi-Qing Ni,et al.  DYNAMIC ANALYSIS OF LARGE-DIAMETER SAGGED CABLES TAKING INTO ACCOUNT FLEXURAL RIGIDITY , 2002 .

[31]  Isaac Fried,et al.  Large deformation static and dynamic finite element analysis of extensible cables , 1982 .

[32]  Danhui Dan,et al.  An improved Wittrick-Williams algorithm for beam-type structures , 2018, Composite Structures.

[33]  Danhui Dan,et al.  Extension of dynamic stiffness method to complicated damped structures , 2018, Computers & Structures.

[34]  Uwe Starossek,et al.  Cable dynamics - a review , 1994 .

[35]  Francesco Benedettini,et al.  Planar non-linear oscillations of elastic cables under superharmonic resonance conditions , 1989 .

[36]  Y. Fujino,et al.  A NON-LINEAR DYNAMIC MODEL FOR CABLES AND ITS APPLICATION TO A CABLE-STRUCTURE SYSTEM , 1995 .

[37]  Jian Peng,et al.  Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects , 2018 .

[38]  F. W. Williams,et al.  NATURAL FREQUENCIES OF REPETITIVE STRUCTURES , 1971 .

[39]  Giuseppe Ricciardi,et al.  A continuous vibration analysis model for cables with sag and bending stiffness , 2008 .

[40]  Zhong Wan-xie,et al.  Computation of the Eigenvalues of Wave Propagation in Periodic Substructural Systems , 1993 .

[41]  V. Koloušek,et al.  Anwendung des Gesetzes der virtuellen Verschiebungen und des Reziprozitätssatzes in der Stabwerksdynamik , 1941 .

[42]  Danhui Dan,et al.  An exact solution for dynamic analysis of a complex double-beam system , 2018, Composite Structures.

[43]  G. Rega,et al.  Nonlinear vibrations of suspended cables—Part II: Deterministic phenomena , 2004 .

[44]  Michael S. Triantafyllou,et al.  Dynamics of cables, towing cables and mooring systems , 1991 .