Capacity of a Simple Intercellular Signal Transduction Channel

We model biochemical signal transduction, based on a ligand-receptor binding mechanism, as a discrete-time finite-state Markov channel, which we call the binding in discrete time channel. We show how to obtain the capacity of this channel, for the case of binary output, binary channel state, and arbitrary finite input alphabets. We show that the capacity-achieving input distribution is identically and independently distributed. Furthermore, we show that feedback does not increase the capacity of this channel. We show how the capacity of the discrete-time channel approaches the capacity of Kabanov's Poisson channel, in the limit of short time steps and rapid ligand release.

[1]  Mohsen Sardari,et al.  Relaying in diffusion-based molecular communication , 2013, 2013 IEEE International Symposium on Information Theory.

[2]  Peter J. Thomas,et al.  The Diffusion-Limited Biochemical Signal-Relay Channel , 2003, NIPS.

[3]  Toby Berger,et al.  Rate distortion theory : a mathematical basis for data compression , 1971 .

[4]  Haim H. Permuter,et al.  Capacity and Zero-Error Capacity of the Chemical Channel with Feedback , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  K. Kullander,et al.  Mechanisms and functions of eph and ephrin signalling , 2002, Nature Reviews Molecular Cell Biology.

[6]  Pravin Varaiya,et al.  Capacity, mutual information, and coding for finite-state Markov channels , 1996, IEEE Trans. Inf. Theory.

[7]  Pablo A Iglesias,et al.  Navigating through models of chemotaxis. , 2008, Current opinion in cell biology.

[8]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[9]  Bard Ermentrout,et al.  Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics , 2014, Journal of Computational Neuroscience.

[10]  Wouter-Jan Rappel,et al.  Quantifying noise levels of intercellular signals. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  W. Rappel,et al.  External and internal constraints on eukaryotic chemotaxis , 2010, Proceedings of the National Academy of Sciences.

[12]  Michael R. Frey Information capacity of the Poisson channel , 1991, IEEE Trans. Inf. Theory.

[13]  R. Davies,et al.  Bacterial-induced release of inflammatory mediators by bronchial epithelial cells. , 1996, The European respiratory journal.

[14]  Ian F. Akyildiz,et al.  Molecular communication options for long range nanonetworks , 2009, Comput. Networks.

[15]  T. Yanagida,et al.  Single-Molecule Analysis of Chemotactic Signaling in Dictyostelium Cells , 2001, Science.

[16]  R. Gallager Information Theory and Reliable Communication , 1968 .

[17]  Andrew W. Eckford,et al.  Tabletop Molecular Communication: Text Messages through Chemical Signals , 2013, PloS one.

[18]  K. Yau,et al.  Phototransduction mechanism in retinal rods and cones. The Friedenwald Lecture. , 1994, Investigative ophthalmology & visual science.

[19]  P. Waage,et al.  Ueber die chemische Affinität. § 1. Einleitung , 1879 .

[20]  Moritz Helias,et al.  Nonequilibrium dynamics of stochastic point processes with refractoriness. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[22]  Toby Berger,et al.  Characterizing optimum (input, output) processes for finite-state channels with feedback , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[23]  Stefan Mihalas,et al.  Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by calmodulin with two bound calciums , 2006, Proceedings of the National Academy of Sciences.

[24]  Wouter-Jan Rappel,et al.  Quantifying Information Transmission in Eukaryotic Gradient Sensing and Chemotactic Response , 2011, Journal of statistical physics.

[25]  Geoffrey J. Goodhill,et al.  A Theoretical Model of Axon Guidance by the Robo Code , 2003, Neural Computation.

[26]  Melanie Hartmann Spikes Exploring The Neural Code Computational Neuroscience , 2016 .

[27]  Christopher Rose,et al.  Wireless signaling with identical quanta , 2012, 2012 IEEE Wireless Communications and Networking Conference (WCNC).

[28]  Rajesh Sundaresan,et al.  Capacity of queues via point-process channels , 2006, IEEE Transactions on Information Theory.

[29]  Nancy R Gough,et al.  Focus Issue: Signaling Across Membranes , 2005, Science's STKE.

[30]  T. Hunter,et al.  Protein-tyrosine kinases. , 1985, Annual review of biochemistry.

[31]  Mohsen Sardari,et al.  Capacity of discrete molecular diffusion channels , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[32]  M. Ueda,et al.  Stochastic signal processing and transduction in chemotactic response of eukaryotic cells. , 2007, Biophysical journal.

[33]  Haim H. Permuter,et al.  Capacity of the Trapdoor Channel With Feedback , 2006, IEEE Transactions on Information Theory.

[34]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[35]  P. Devreotes,et al.  A chemoattractant receptor controls development in Dictyostelium discoideum. , 1988, Science.

[36]  D. Blackwell,et al.  Proof of Shannon's Transmission Theorem for Finite-State Indecomposable Channels , 1958 .

[37]  R. Kessin Dictyostelium: Evolution, Cell Biology, and the Development of Multicellularity , 2001 .

[38]  Todd P. Coleman,et al.  Estimating the directed information to infer causal relationships in ensemble neural spike train recordings , 2010, Journal of Computational Neuroscience.

[39]  Desmond J. Higham,et al.  Modeling and Simulating Chemical Reactions , 2008, SIAM Rev..

[40]  Andrew W. Eckford,et al.  Nanoscale Communication with Brownian Motion , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[41]  I. Nemenman,et al.  Information Transduction Capacity of Noisy Biochemical Signaling Networks , 2011, Science.

[42]  T. Sejnowski,et al.  Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines , 2008, PloS one.

[43]  P. Devreotes,et al.  Moving in the right direction: how eukaryotic cells migrate along chemical gradients. , 2011, Seminars in cell & developmental biology.

[44]  Hui Li,et al.  Capacity of the Memoryless Additive Inverse Gaussian Noise Channel , 2014, IEEE Journal on Selected Areas in Communications.

[45]  Tatsuya Suda,et al.  Molecular communication through gap junction channels: System design, experiments and modeling , 2007, 2007 2nd Bio-Inspired Models of Network, Information and Computing Systems.

[46]  Özgür B. Akan,et al.  An information theoretical approach for molecular communication , 2007, 2007 2nd Bio-Inspired Models of Network, Information and Computing Systems.

[47]  Israel Bar-David,et al.  Capacity and coding for the Gilbert-Elliot channels , 1989, IEEE Trans. Inf. Theory.

[48]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[49]  Toby Berger,et al.  The capacity of finite-State Markov Channels With feedback , 2005, IEEE Transactions on Information Theory.

[50]  Haim H. Permuter,et al.  Capacity of a POST Channel With and Without Feedback , 2014, IEEE Trans. Inf. Theory.

[51]  Mark H. A. Davis,et al.  Capacity and cutoff rate for Poisson-type channels , 1980, IEEE Trans. Inf. Theory.

[52]  Todd P. Coleman,et al.  Directed Information Graphs , 2012, IEEE Transactions on Information Theory.

[53]  J. Massey CAUSALITY, FEEDBACK AND DIRECTED INFORMATION , 1990 .

[54]  Gerhard Kramer Capacity results for the discrete memoryless network , 2003, IEEE Trans. Inf. Theory.

[55]  Wouter-Jan Rappel,et al.  Establishing direction during chemotaxis in eukaryotic cells. , 2002, Biophysical journal.

[56]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[57]  Robert G. Endres,et al.  Noise characteristics of the Escherichia coli rotary motor , 2011, BMC Systems Biology.

[58]  David F. Anderson,et al.  Continuous Time Markov Chain Models for Chemical Reaction Networks , 2011 .

[59]  Peter J Thomas,et al.  Measuring Edge Importance: A Quantitative Analysis of the Stochastic Shielding Approximation for Random Processes on Graphs , 2013, Journal of mathematical neuroscience.

[60]  R. Cheong,et al.  How Information Theory Handles Cell Signaling and Uncertainty , 2012, Science.

[61]  J. Adler,et al.  Protein methylation in behavioural control mechanisms and in signal transduction , 1979, Nature.

[62]  I. Nemenman,et al.  Cellular noise and information transmission. , 2014, Current opinion in biotechnology.

[63]  W. Fontana,et al.  Small Numbers of Big Molecules , 2002, Science.

[64]  Peter N. Devreotes,et al.  G protein-linked signaling pathways control the developmental program of dictyostelium , 1994, Neuron.

[65]  Peter J Thomas Every Bit Counts , 2011, Science.

[66]  Mohsen Sardari,et al.  Capacity of diffusion-based molecular communication with ligand receptors , 2011, 2011 IEEE Information Theory Workshop.

[67]  M. Kennedy,et al.  Signal-processing machines at the postsynaptic density. , 2000, Science.

[68]  Benjamin Lindner,et al.  Integrate-and-fire neurons driven by asymmetric dichotomous noise , 2014, Biological Cybernetics.

[69]  Haim H. Permuter,et al.  Capacity of a POST Channel With and Without Feedback , 2014, IEEE Transactions on Information Theory.

[70]  Toby Berger,et al.  Capacity and zero-error capacity of Ising channels , 1990, IEEE Trans. Inf. Theory.

[71]  Haim H. Permuter,et al.  To Feed or Not to Feedback , 2014, IEEE Transactions on Information Theory.

[72]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[73]  Y. Kabanov The Capacity of a Channel of the Poisson Type , 1978 .

[74]  Massimiliano Pierobon,et al.  A physical end-to-end model for molecular communication in nanonetworks , 2010, IEEE Journal on Selected Areas in Communications.

[75]  Aaron D. Wyner,et al.  Capacity and error-exponent for the direct detection photon channel-Part II , 1988, IEEE Trans. Inf. Theory.

[76]  P. Brémaud Point Processes and Queues , 1981 .

[77]  D. Robbins,et al.  The Hedgehog Signal Transduction Network , 2012, Science Signaling.