A TRUNCATED FOURIER/FINITE ELEMENT DISCRETIZATION OF THE STOKES EQUATIONS IN AN AXISYMMETRIC DOMAIN
暂无分享,去创建一个
Frédéric Hecht | Christine Bernardi | Zakaria Belhachmi | Simone Deparis | F. Hecht | S. Deparis | C. Bernardi | Z. Belhachmi
[1] Long-an Ying. Infinite element approximation to axial symmetric Stokes flow , 1986 .
[2] B. Mercier,et al. Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $ , 1982 .
[3] R. A. Nicolaides,et al. STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .
[4] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[5] M. Tabata. Finite element analysis of axisymmetric flow problems , 1996 .
[6] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[7] A. Quarteroni,et al. Approximation results for orthogonal polynomials in Sobolev spaces , 1982 .
[8] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[9] Christine Bernardi,et al. Weighted Clément operator and application to the finite element discretization of the axisymmetric Stokes problem , 2006, Numerische Mathematik.
[10] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.