Effect of a circumferential feeding groove on fluid force in short squeeze film dampers

The present work studies fluid forces in a squeeze film damper with a circumferential feeding groove. The groove is taken as a special damper to analyse fluid forces. The dynamic performance of the squeeze film damper is attributed to the special damper, two film lands, and their interactions. From this viewpoint, dynamic effects in the groove are studied based on linearized Navier-Stokes equations to consider effects of variations of fluid velocity and pressure in the groove on forces in the damper. Investigations on film lands are conducted by using a simplified Navier-Stokes equation to include fluid inertia. Then, the two part analyses are combined together by studying the interactions of the flow and the pressure between the groove and film lands from the continuity condition and a Navier-Strokes equation, resulting in new models for force predictions. The new models are compared with experimental results and published work. Comparisons show the new models give better predictions and correlation with experimental data than traditional theory. The new models give a significant improvement on results obtained by traditional theory, especially for tangential force. Based on the new models, the effects of the groove on fluid forces are studied.