Precise semidefinite programming formulation of atomic norm minimization for recovering d-dimensional (D ≥ 2) off-the-grid frequencies
暂无分享,去创建一个
Weiyu Xu | Anton Kruger | Jian-Feng Cai | Kumar Vijay Mishra | Myung Cho | Jian-Feng Cai | Weiyu Xu | A. Kruger | Myung Cho | K. Mishra
[1] Yuxin Chen,et al. Compressive recovery of 2-D off-grid frequencies , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.
[2] Musheng Wei,et al. A new theoretical approach for Prony's method☆ , 1990 .
[3] Emmanuel J. Cand. Towards a Mathematical Theory of Super-Resolution , 2012 .
[4] A. Robert Calderbank,et al. Sensitivity to Basis Mismatch in Compressed Sensing , 2011, IEEE Trans. Signal Process..
[5] Kim-Chuan Toh,et al. Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..
[6] Yuxin Chen,et al. Robust Spectral Compressed Sensing via Structured Matrix Completion , 2013, IEEE Transactions on Information Theory.
[7] Gitta Kutyniok,et al. Theory and applications of compressed sensing , 2012, 1203.3815.
[8] C. Carathéodory. Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .
[9] Marco F. Duarte,et al. Spectral compressive sensing , 2013 .
[10] Gongguo Tang,et al. Sparse recovery over continuous dictionaries-just discretize , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.
[11] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[12] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[13] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[14] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications , 2007 .
[15] G. Majda,et al. A simple procedure to eliminate known poles from a time series , 1989 .