Design and characterization of micro-inertia switches fabricated using low-temperature metal-electroplating technology

Inertia micro-switches have been designed and realized using a low-temperature metal-electroplating technology compatible with processed substrates containing micro-electronic circuits. A simple but accurate lumped spring-mass model is developed based on analytical and numerical analyses. Predictions of the behavior of switches with different geometric designs have been verified using both drop hammer and shaker tests. With the application of an anti-stiction hydrophobic coating, improved storage time and un-encapsulated switches making over 50 million contacts have been demonstrated in room ambient.