An improved algorithm for approximating the chromatic number of Gn, p
暂无分享,去创建一个
[1] Béla Bollobás,et al. Random Graphs , 1985 .
[2] V. Vu,et al. Approximating the Independence Number and the Chromatic Number in Expected Polynomial Time , 2000, J. Comb. Optim..
[3] Eugene L. Lawler,et al. A Note on the Complexity of the Chromatic Number Problem , 1976, Inf. Process. Lett..
[4] Colin McDiarmid,et al. Topics in Chromatic Graph Theory: Colouring random graphs , 2015 .
[5] Tomasz Luczak. The chromatic number of random graphs , 1991, Comb..
[6] Assaf Naor,et al. The two possible values of the chromatic number of a random graph , 2004, STOC '04.
[7] Uriel Feige,et al. Zero Knowledge and the Chromatic Number , 1998, J. Comput. Syst. Sci..
[8] Amin Coja-Oghlan,et al. Exact and approximative algorithms for coloring G(n,p) , 2004 .
[9] Ludek Kucera,et al. The Greedy Coloring Is a Bad Probabilistic Algorithm , 1991, J. Algorithms.
[10] Alan M. Frieze,et al. Algorithmic theory of random graphs , 1997, Random Struct. Algorithms.
[11] Cristopher Moore,et al. MAX k‐CUT and approximating the chromatic number of random graphs , 2003, Random Struct. Algorithms.
[12] Amin Coja-Oghlan. The Lovász Number of Random Graphs , 2003, RANDOM-APPROX.
[13] Béla Bollobás,et al. The chromatic number of random graphs , 1988, Comb..
[14] David R. Karger,et al. Approximate graph coloring by semidefinite programming , 1998, JACM.
[15] Michael Krivelevich,et al. Coloring Random Graphs — an Algorithmic Perspective , 2002 .
[16] Amin Coja-Oghlan,et al. Exact and approximative algorithms for coloring G(n,p) , 2004, Random Struct. Algorithms.