A symmetric rank-one quasi-Newton line-search method using negative curvature directions

We propose a quasi-Newton line-search method that uses negative curvature directions for solving unconstrained optimization problems. In this method, the symmetric rank-one (SR1) rule is used to update the Hessian approximation. The SR1 update rule is known to have a good numerical performance; however, it does not guarantee positive definiteness of the updated matrix. We first discuss the details of the proposed algorithm and then concentrate on its practical behaviour. Our extensive computational study shows the potential of the proposed method from different angles, such as its performance compared with some other existing packages, the profile of its computations, and its large-scale adaptation. We then conclude the paper with the convergence analysis of the proposed method.

[1]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[2]  Nicholas I. M. Gould,et al.  Convergence of quasi-Newton matrices generated by the symmetric rank one update , 1991, Math. Program..

[3]  Todd L. Veldhuizen,et al.  Will C++ Be Faster than Fortran? , 1997, ISCOPE.

[4]  Elizabeth Eskow,et al.  Algorithm 738: a software package for unconstrained optimization using tensor methods , 1990, TOMS.

[5]  Ekkehard W. Sachs,et al.  Local Convergence of the Symmetric Rank-One Iteration , 1995, Comput. Optim. Appl..

[6]  P. K. Phua Eigenvalues and switching algorithms for Quasi-Newton updates , 1997 .

[7]  Michael C. Ferris,et al.  Nonmonotone curvilinear line search methods for unconstrained optimization , 1996, Comput. Optim. Appl..

[8]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[9]  P. Spellucci A Modified Rank One Update Which Converges Q-Superlinearly , 2001, Comput. Optim. Appl..

[10]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[11]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[12]  Javier M. Moguerza,et al.  Nonconvex optimization using negative curvature within a modified linesearch , 2008, Eur. J. Oper. Res..

[13]  Bobby Schnabel,et al.  A modular system of algorithms for unconstrained minimization , 1985, TOMS.

[14]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[15]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[16]  Richard H. Byrd,et al.  Analysis of a Symmetric Rank-One Trust Region Method , 1996, SIAM J. Optim..

[17]  S. Lucidi,et al.  Exploiting negative curvature directions in linesearch methods for unconstrained optimization , 2000 .

[18]  Richard H. Byrd,et al.  A Theoretical and Experimental Study of the Symmetric Rank-One Update , 1993, SIAM J. Optim..

[19]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[20]  Gene H. Golub,et al.  Matrix computations , 1983 .