A symmetric rank-one quasi-Newton line-search method using negative curvature directions
暂无分享,去创建一个
[1] K. Schittkowski,et al. NONLINEAR PROGRAMMING , 2022 .
[2] Nicholas I. M. Gould,et al. Convergence of quasi-Newton matrices generated by the symmetric rank one update , 1991, Math. Program..
[3] Todd L. Veldhuizen,et al. Will C++ Be Faster than Fortran? , 1997, ISCOPE.
[4] Elizabeth Eskow,et al. Algorithm 738: a software package for unconstrained optimization using tensor methods , 1990, TOMS.
[5] Ekkehard W. Sachs,et al. Local Convergence of the Symmetric Rank-One Iteration , 1995, Comput. Optim. Appl..
[6] P. K. Phua. Eigenvalues and switching algorithms for Quasi-Newton updates , 1997 .
[7] Michael C. Ferris,et al. Nonmonotone curvilinear line search methods for unconstrained optimization , 1996, Comput. Optim. Appl..
[8] J. J. Moré,et al. Quasi-Newton Methods, Motivation and Theory , 1974 .
[9] P. Spellucci. A Modified Rank One Update Which Converges Q-Superlinearly , 2001, Comput. Optim. Appl..
[10] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[11] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[12] Javier M. Moguerza,et al. Nonconvex optimization using negative curvature within a modified linesearch , 2008, Eur. J. Oper. Res..
[13] Bobby Schnabel,et al. A modular system of algorithms for unconstrained minimization , 1985, TOMS.
[14] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[15] Nicholas I. M. Gould,et al. CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.
[16] Richard H. Byrd,et al. Analysis of a Symmetric Rank-One Trust Region Method , 1996, SIAM J. Optim..
[17] S. Lucidi,et al. Exploiting negative curvature directions in linesearch methods for unconstrained optimization , 2000 .
[18] Richard H. Byrd,et al. A Theoretical and Experimental Study of the Symmetric Rank-One Update , 1993, SIAM J. Optim..
[19] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[20] Gene H. Golub,et al. Matrix computations , 1983 .