A Simulated Annealing approach for solving Minimum Manhattan Network Problem

In this paper we address the Minimum Manhattan Network (MMN) problem. It is an important geometric problem with vast applications. As it is an NP-complete discrete combinatorial optimization problem we employ a simple metaheuristic namely Simulated Annealing. We have also developed benchmark datasets and tested our algorithm with the dataset.

[1]  Joachim Gudmundsson,et al.  Approximating a Minimum Manhattan Network , 2001, Nord. J. Comput..

[2]  Victor Chepoi,et al.  A Rounding Algorithm for Approximating Minimum Manhattan Networks , 2005, APPROX-RANDOM.

[3]  Alexander Wolff,et al.  The Minimum Manhattan Network Problem: A Fast Factor-3 Approximation , 2004, JCDCG.

[4]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[5]  Takao Asano,et al.  An Improved Algorithm for the Minimum Manhattan Network Problem , 2002, ISAAC.

[6]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[7]  Alexander Wolff,et al.  The minimum Manhattan network problem: Approximations and exact solutions , 2006, Comput. Geom..

[8]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[9]  Hong Zhu,et al.  Greedy Construction of 2-Approximation Minimum Manhattan Network , 2008, ISAAC.

[10]  Alexander Wolff,et al.  Polylogarithmic Approximation for Generalized Minimum Manhattan Networks , 2012, ArXiv.

[11]  Hong Zhu,et al.  A Fast 2-Approximation Algorithm for the Minimum Manhattan Network Problem , 2008, AAIM.

[12]  Sebastian Seibert,et al.  A 1.5-Approximation of the Minimal Manhattan Network Problem , 2005, ISAAC.

[13]  Lior Pachter,et al.  Picking Alignments from (Steiner) Trees , 2003 .

[14]  Lior Pachter,et al.  Picking alignments from (steiner) trees , 2002, RECOMB '02.

[15]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[16]  Sebastian Seibert,et al.  The Minimal Manhattan Network Problem in Three Dimensions , 2009, WALCOM.

[17]  Francis Y. L. Chin,et al.  Minimum Manhattan network is NP-complete , 2009, SCG '09.