Quaternionic analysis, representation theory and physics II

[1]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[2]  C. Itzykson,et al.  GROUP THEORY AND THE HYDROGEN ATOM. II. , 1966 .

[3]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[4]  E. Witten,et al.  Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical Review Letters.

[5]  N. N. Bogoliubov,et al.  Introduction to the theory of quantized fields , 1960 .

[6]  S. M. Paneitz Analysis in space-time bundles. III. Higher spin bundles , 1983 .

[7]  R. Fueter Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen , 1935 .

[8]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[9]  R. Strichartz Harmonic analysis on hyperboloids , 1973 .

[10]  A. I. Davydychev,et al.  Exact results for three- and four-point ladder diagrams with an arbitrary number of rungs , 1993 .

[11]  M. Vergne,et al.  Wave and Dirac operators, and representations of the conformal group , 1977 .

[12]  Magic identities for conformal four-point integrals , 2006, hep-th/0607160.

[13]  I. Segal Positive-energy particle models with mass splitting. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[14]  F. Sommen,et al.  Clifford Algebra and Spinor-Valued Functions , 1992 .

[15]  S. Badger,et al.  Simplicity in the structure of QED and gravity amplitudes , 2008, 0811.3405.

[16]  A. W. Knapp,et al.  Irreducible unitary representations of SU(2, 2) , 1982 .

[17]  Run Fueter Die Funktionentheorie der DifferentialgleichungenΔu=0 undΔΔu=0 mit vier reellen Variablen , 1934 .

[18]  M. Eastwood,et al.  A conformally invariant Maxwell gauge , 1985 .

[19]  I. Frenkel,et al.  R T ] 2 5 M ay 2 00 8 Quaternionic Analysis , Representation Theory and Physics , 2008 .

[20]  Chia-Hsiung Tze,et al.  On the Role of Division, Jordan and Related Algebras in Particle Physics , 1996 .

[21]  A geometrical angle on Feynman integrals , 1997, hep-th/9709216.

[22]  M. Vergne,et al.  Restrictions and Expansions of Holomorphic Representations , 1979 .

[23]  B. Keller A-infinity algebras, modules and functor categories , 2005, math/0510508.

[24]  Toshiyuki Kobayashi,et al.  Analysis on the minimal representation of O(p,q) II. Branching laws , 2001, math/0111085.

[25]  H. Upmeier,et al.  Boundary Measures for Symmetric Domains and Integral Formulas for the Discrete Wallach Points , 2003 .

[26]  P. Wagner A volume formula for asymptotic hyperbolic tetrahedra with an application to quantum field theory , 1996 .

[27]  M. Vergne,et al.  Analytic continuation of the holomorphic discrete series of a semi-simple Lie group , 1976 .

[28]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[29]  Analysis on the minimal representation of O(p,q) -- III. ultrahyperbolic equations on R^{p-1,q-1} , 2001, math/0111086.

[30]  F. Sommen,et al.  Analysis of Dirac Systems and Computational Algebra , 2004 .

[31]  Andrew Chang Quaternionic analysis , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[32]  Don Zagier,et al.  The dilogarithm function. , 2007 .

[33]  Soo Teck Lee On Some Degenerate Principal Series Representations of U(n,n) , 1994 .

[34]  Analysis on the minimal representation of O(p;q) { I. Realization via conformal geometry , 2001, math/0111083.

[35]  Toshiyuki Kobayashi Analysis on the minimal representation of , 2002 .

[36]  H. Upmeier ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .