Quaternionic analysis, representation theory and physics II
暂无分享,去创建一个
[1] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .
[2] C. Itzykson,et al. GROUP THEORY AND THE HYDROGEN ATOM. II. , 1966 .
[3] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[4] E. Witten,et al. Direct proof of the tree-level scattering amplitude recursion relation in Yang-mills theory. , 2005, Physical Review Letters.
[5] N. N. Bogoliubov,et al. Introduction to the theory of quantized fields , 1960 .
[6] S. M. Paneitz. Analysis in space-time bundles. III. Higher spin bundles , 1983 .
[7] R. Fueter. Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen , 1935 .
[8] Michael E. Taylor,et al. Differential Geometry I , 1994 .
[9] R. Strichartz. Harmonic analysis on hyperboloids , 1973 .
[10] A. I. Davydychev,et al. Exact results for three- and four-point ladder diagrams with an arbitrary number of rungs , 1993 .
[11] M. Vergne,et al. Wave and Dirac operators, and representations of the conformal group , 1977 .
[12] Magic identities for conformal four-point integrals , 2006, hep-th/0607160.
[13] I. Segal. Positive-energy particle models with mass splitting. , 1967, Proceedings of the National Academy of Sciences of the United States of America.
[14] F. Sommen,et al. Clifford Algebra and Spinor-Valued Functions , 1992 .
[15] S. Badger,et al. Simplicity in the structure of QED and gravity amplitudes , 2008, 0811.3405.
[16] A. W. Knapp,et al. Irreducible unitary representations of SU(2, 2) , 1982 .
[17] Run Fueter. Die Funktionentheorie der DifferentialgleichungenΔu=0 undΔΔu=0 mit vier reellen Variablen , 1934 .
[18] M. Eastwood,et al. A conformally invariant Maxwell gauge , 1985 .
[19] I. Frenkel,et al. R T ] 2 5 M ay 2 00 8 Quaternionic Analysis , Representation Theory and Physics , 2008 .
[20] Chia-Hsiung Tze,et al. On the Role of Division, Jordan and Related Algebras in Particle Physics , 1996 .
[21] A geometrical angle on Feynman integrals , 1997, hep-th/9709216.
[22] M. Vergne,et al. Restrictions and Expansions of Holomorphic Representations , 1979 .
[23] B. Keller. A-infinity algebras, modules and functor categories , 2005, math/0510508.
[24] Toshiyuki Kobayashi,et al. Analysis on the minimal representation of O(p,q) II. Branching laws , 2001, math/0111085.
[25] H. Upmeier,et al. Boundary Measures for Symmetric Domains and Integral Formulas for the Discrete Wallach Points , 2003 .
[26] P. Wagner. A volume formula for asymptotic hyperbolic tetrahedra with an application to quantum field theory , 1996 .
[27] M. Vergne,et al. Analytic continuation of the holomorphic discrete series of a semi-simple Lie group , 1976 .
[28] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[29] Analysis on the minimal representation of O(p,q) -- III. ultrahyperbolic equations on R^{p-1,q-1} , 2001, math/0111086.
[30] F. Sommen,et al. Analysis of Dirac Systems and Computational Algebra , 2004 .
[31] Andrew Chang. Quaternionic analysis , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.
[32] Don Zagier,et al. The dilogarithm function. , 2007 .
[33] Soo Teck Lee. On Some Degenerate Principal Series Representations of U(n,n) , 1994 .
[34] Analysis on the minimal representation of O(p;q) { I. Realization via conformal geometry , 2001, math/0111083.
[35] Toshiyuki Kobayashi. Analysis on the minimal representation of , 2002 .
[36] H. Upmeier. ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .