Dimension Reduction of the Schrödinger Equation with Coulomb and Anisotropic Confining Potentials

We consider dimension reduction for the three-dimensional (3D) Schrodinger equation with the Coulomb interaction and an anisotropic confining potential to lower-dimensional models in the limit of infinitely strong confinement in one or two space dimensions and obtain formally the surface adiabatic model (SAM) or surface density model (SDM) in two dimensions (2D) and the line adiabatic model (LAM) in one dimension (1D). Efficient and accurate numerical methods for computing ground states and dynamics of the SAM, SDM, and LAM models are presented based on efficient and accurate numerical schemes for evaluating the effective potential in lower-dimensional models. They are applied to find numerically convergence and convergence rates for the dimension reduction from 3D to 2D and 3D to 1D in terms of ground state and dynamics, which confirm some existing analytical results for the dimension reduction in the literature. In particular, we explain and demonstrate that the standard Schrodinger--Poisson system in 2...

[1]  Yong Zhang,et al.  On the computation of ground state and dynamics of Schrödinger-Poisson-Slater system , 2011, J. Comput. Phys..

[2]  Zydrunas Gimbutas,et al.  Coulomb Interactions on Planar Structures: Inverting the Square Root of the Laplacian , 2000, SIAM J. Sci. Comput..

[3]  Naoufel Ben Abdallah,et al.  The Strongly Confined Schrödinger--Poisson System for the Transport of Electrons in a Nanowire , 2009, SIAM J. Appl. Math..

[4]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[5]  L. M. Otto As Quantum Wells , 2012 .

[6]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[7]  Weizhu Bao,et al.  Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions , 2010, 1006.4950.

[8]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[9]  M. Jaros,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[10]  Stefan Goedecker,et al.  Efficient solution of Poisson's equation with free boundary conditions. , 2006, The Journal of chemical physics.

[11]  Elliott H. Lieb,et al.  Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.

[12]  P. Harrison Quantum wells, wires, and dots : theoretical and computational physics , 2016 .

[13]  Eric Polizzi,et al.  Subband decomposition approach for the simulation of quantum electron transport in nanostructures , 2005 .

[14]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[15]  Horng-Tzer Yau,et al.  Derivation of the nonlinear Schr\"odinger equation from a many body Coulomb system , 2001 .

[16]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[17]  Olivier Pinaud,et al.  Adiabatic Approximation of the Schrödinger-Poisson System with a Partial Confinement , 2005, SIAM J. Math. Anal..

[18]  Weizhu Bao,et al.  Convergence rate of dimension reduction in Bose-Einstein condensates , 2007, Comput. Phys. Commun..

[19]  Christian Schmeiser,et al.  The Nonlinear Schrödinger Equation with a Strongly Anisotropic Harmonic Potential , 2005, SIAM J. Math. Anal..

[20]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[21]  Weizhu Bao,et al.  Effective dipole-dipole interactions in multilayered dipolar Bose-Einstein condensates , 2012, 1201.6176.

[22]  Jie Shen,et al.  Spectral and High-Order Methods with Applications , 2006 .

[23]  Risto M. Nieminen,et al.  Electronic Properties of Two-Dimensional Systems , 1988 .

[24]  Shi Jin,et al.  Numerical Study of Time-Splitting Spectral Discretizations of Nonlinear Schrödinger Equations in the Semiclassical Regimes , 2003, SIAM J. Sci. Comput..

[25]  Juan Soler,et al.  Long-Time Dynamics of the Schrödinger–Poisson–Slater System , 2004 .

[26]  I-Liang Chern,et al.  BOSE-EINSTEIN CONDENSATION , 2021, Structural Aspects of Quantum Field Theory and Noncommutative Geometry.

[27]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[28]  Naoufel Ben Abdallah,et al.  Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity , 2008 .

[29]  Elliott H. Lieb,et al.  Derivation of the Gross-Pitaevskii Equation for Rotating Bose Gases , 2006 .

[30]  Weizhu Bao,et al.  Gross-Pitaevskii-Poisson Equations for Dipolar Bose-Einstein Condensate with Anisotropic Confinement , 2012, SIAM J. Math. Anal..

[31]  François Golse,et al.  Derivation of the Schrödinger–Poisson equation from the quantum N-body problem , 2002 .

[32]  P. Markowich,et al.  On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .

[33]  Weizhu Bao,et al.  Effective One Particle Quantum Dynamics of Electrons: A Numerical Study of the Schrodinger-Poisson-X alpha Model , 2003 .

[34]  Olivier Pinaud,et al.  Adiabatic approximation of the Schrödinger–Poisson system with a partial confinement: The stationary case , 2004 .

[35]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[36]  Horng-Tzer Yau,et al.  Derivation of the Gross-Pitaevskii equation for the dynamics of Bose-Einstein condensate , 2004, math-ph/0606017.

[37]  Xuanchun Dong,et al.  A short note on simplified pseudospectral methods for computing ground state and dynamics of spherically symmetric Schrödinger-Poisson-Slater system , 2011, J. Comput. Phys..

[38]  François Golse,et al.  Weak Copling Limit of the N-Particle Schrödinger Equation , 2000 .

[39]  Eric Polizzi,et al.  Self-consistent three-dimensional models for quantum ballistic transport in open systems , 2002 .

[40]  Marc Heyns,et al.  General 2D Schrödinger-Poisson solver with open boundary conditions for nano-scale CMOS transistors , 2008 .

[41]  Joel N. Schulman,et al.  Wave Mechanics Applied to Semiconductor Heterostructures , 1991 .

[42]  Satoshi Masaki,et al.  Energy Solution to a Schrödinger-Poisson System in the Two-Dimensional Whole Space , 2010, SIAM J. Math. Anal..

[43]  Marc Vuffray,et al.  Stationary solutions of the Schrödinger-Newton model---an ODE approach , 2007, Differential and Integral Equations.

[44]  Biao Wu,et al.  Bose-Einstein condensate in a honeycomb optical lattice: fingerprint of superfluidity at the Dirac point. , 2011, Physical review letters.

[45]  Florian Méhats Analysis of a Quantum Subband Model for the Transport of Partially Confined Charged Particles , 2006 .

[46]  Matthias Ehrhardt,et al.  Fast calculation of energy and mass preserving solutions of Schrödinger-Poisson systems on unbounded domains , 2006 .

[47]  Norman Yarvin,et al.  An Improved Fast Multipole Algorithm for Potential Fields on the Line , 1999 .

[48]  Elliott H. Lieb,et al.  The Mathematics of the Bose Gas and its Condensation , 2005 .

[49]  Xavier Cabre,et al.  Positive solutions of nonlinear problems involving the square root of the Laplacian , 2009, 0905.1257.

[50]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[51]  T. Cazenave Semilinear Schrodinger Equations , 2003 .