Event-Related Repetitive Transcranial Magnetic Stimulation of Posterior Superior Temporal Sulcus Improves the Detection of Threatening Postural Changes in Human Bodies

Perceiving others' emotions through their body movements and postures is crucial for successful social interaction. While imaging studies indicate that perceiving body emotions relies upon a wide network of subcortico-cortical neural regions, little is known on the causative role of different nodes of this network. We applied event-related repetitive transcranial magnetic stimulation (rTMS) over nonfacial, body- and action-related extrastriate (EBA), temporal (pSTS), and premotor (vPM) cortices to test their active contribution in perceiving changes between two successive images of either threatening or neutral human body or animal postures. While stimulation of EBA and vPM showed no selective effect on threatening stimuli with respect to neutral ones, rTMS over pSTS selectively impaired neutral posture detection and increased the accuracy in detecting changes of threatening human postures with respect to all other experimental conditions. No such effect was found for animal stimuli. These results support the notion that pSTS is crucially devoted to the detection of socially relevant information concerning others' actions, fostering the notion that amygdalo-temporo-cortical modulatory connections mediate perception of emotionally salient body postures.

[1]  Nouchine Hadjikhani,et al.  Non-conscious recognition of emotional body language , 2006, Neuroreport.

[2]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[3]  C. Urgesi,et al.  The Neural Basis of Body Form and Body Action Agnosia , 2008, Neuron.

[4]  P. Haggard,et al.  Transcranial Magnetic Stimulation Reveals Two Cortical Pathways for Visual Body Processing , 2007, The Journal of Neuroscience.

[5]  Audrey R. Nath,et al.  fMRI-Guided Transcranial Magnetic Stimulation Reveals That the Superior Temporal Sulcus Is a Cortical Locus of the McGurk Effect , 2010, The Journal of Neuroscience.

[6]  Michael Andres,et al.  Dissociable roles of the human somatosensory and superior temporal cortices for processing social face signals , 2004, The European journal of neuroscience.

[7]  M. Corbetta,et al.  Extrastriate body area in human occipital cortex responds to the performance of motor actions , 2004, Nature Neuroscience.

[8]  Alison J. Wiggett,et al.  Functional MRI analysis of body and body part representations in the extrastriate and fusiform body areas. , 2007, Journal of neurophysiology.

[9]  V. Walsh,et al.  State-dependency in brain stimulation studies of perception and cognition , 2008, Trends in Cognitive Sciences.

[10]  Béatrice de Gelder,et al.  Seeing Fearful Body Language Overcomes Attentional Deficits in Patients with Neglect , 2007, Journal of Cognitive Neuroscience.

[11]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[12]  Dylan F. Cooke,et al.  Sensorimotor integration in the precentral gyrus: polysensory neurons and defensive movements. , 2004, Journal of neurophysiology.

[13]  J. Schwarzbach,et al.  State-dependent TMS reveals a hierarchical representation of observed acts in the temporal, parietal, and premotor cortices. , 2010, Cerebral cortex.

[14]  A. Saygin Superior temporal and premotor brain areas necessary for biological motion perception. , 2007, Brain : a journal of neurology.

[15]  Cosimo Urgesi,et al.  Magnetic Stimulation of Extrastriate Body Area Impairs Visual Processing of Nonfacial Body Parts , 2004, Current Biology.

[16]  D. Perrett,et al.  EPS Mid-Career Award 2008 Seeing the future : Natural image sequences produce “ anticipatory ” neuronal activity and bias perceptual report , 2009 .

[17]  T. Allison,et al.  Social perception from visual cues: role of the STS region , 2000, Trends in Cognitive Sciences.

[18]  B. Gelder,et al.  Why bodies? Twelve reasons for including bodily expressions in affective neuroscience , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[19]  Patrik Vuilleumier,et al.  Emotional modulation of body-selective visual areas. , 2007, Social cognitive and affective neuroscience.

[20]  J. Grèzes,et al.  Emotional modulation of visual and motor areas by dynamic body expressions of anger , 2008, Social neuroscience.

[21]  Á. Pascual-Leone,et al.  Repetitive TMS over posterior STS disrupts perception of biological motion , 2005, Vision Research.

[22]  J. Power,et al.  The amygdaloid complex: anatomy and physiology. , 2003, Physiological reviews.

[23]  C. Cavina-Pratesi,et al.  Dissociable neural responses to hands and non-hand body parts in human left extrastriate visual cortex. , 2010, Journal of neurophysiology.

[24]  M. Graziano,et al.  Complex Movements Evoked by Microstimulation of Precentral Cortex , 2002, Neuron.

[25]  Silvio Ionta,et al.  Virtual lesion of ventral premotor cortex impairs visual perception of biomechanically possible but not impossible actions , 2008, Social neuroscience.

[26]  Juha Silvanto,et al.  Neural adaptation reveals state‐dependent effects of transcranial magnetic stimulation , 2007, The European journal of neuroscience.

[27]  Karl J. Friston,et al.  A neuromodulatory role for the human amygdala in processing emotional facial expressions. , 1998, Brain : a journal of neurology.

[28]  D. Spalding The Principles of Psychology , 1873, Nature.

[29]  Neil G. Muggleton,et al.  Testing the validity of the TMS state-dependency approach: Targeting functionally distinct motion-selective neural populations in visual areas V1/V2 and V5/MT+ , 2008, NeuroImage.

[30]  D. Amaral,et al.  Amygdalo‐cortical projections in the monkey (Macaca fascicularis) , 1984, The Journal of comparative neurology.

[31]  M. Shiffrar,et al.  The visual analysis of emotional actions , 2006, Social neuroscience.

[32]  Guy M. Goodwin,et al.  The role of the anterior cingulate cortex in the counting Stroop task , 2004, Experimental Brain Research.

[33]  R. Hari,et al.  Viewing Lip Forms Cortical Dynamics , 2002, Neuron.

[34]  Beatrice de Gelder,et al.  The neural basis of perceiving emotional bodily expressions in monkeys , 2009, Neuroreport.

[35]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[36]  Juha Silvanto,et al.  Contrasting early visual cortical activation states causally involved in visual imagery and short‐term memory , 2009, The European journal of neuroscience.

[37]  Karl J. Friston,et al.  Evidence of Mirror Neurons in Human Inferior Frontal Gyrus , 2009, The Journal of Neuroscience.

[38]  C. Darwin,et al.  The Expression of the Emotions in Man and Animals , 1872 .

[39]  Swann Pichon,et al.  Similarities and differences in perceiving threat from dynamic faces and bodies. An fMRI study , 2011, NeuroImage.

[40]  J. Stekelenburg,et al.  The neural correlates of perceiving human bodies: an ERP study on the body-inversion effect , 2004, Neuroreport.

[41]  J C Mazziotta,et al.  Reafferent copies of imitated actions in the right superior temporal cortex , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. G. Snodgrass,et al.  Pragmatics of measuring recognition memory: applications to dementia and amnesia. , 1988, Journal of experimental psychology. General.

[43]  T. Hendler,et al.  Feeling or Features Different Sensitivity to Emotion in High-Order Visual Cortex and Amygdala , 2001, Neuron.

[44]  Alison J. Wiggett,et al.  The role of the extrastriate body area in action perception , 2006, Social neuroscience.

[45]  N. Hadjikhani,et al.  Seeing Fearful Body Expressions Activates the Fusiform Cortex and Amygdala , 2003, Current Biology.

[46]  D. Amaral,et al.  Evidence for an amygdaloid projection to premotor cortex but not to motor cortex in the monkey , 1983, Brain Research.

[47]  Swann Pichon,et al.  Perceiving fear in dynamic body expressions , 2007, NeuroImage.

[48]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[49]  R. Dolan,et al.  Distant influences of amygdala lesion on visual cortical activation during emotional face processing , 2004, Nature Neuroscience.

[50]  Julie Grèzes,et al.  Specific and common brain regions involved in the perception of faces and bodies and the representation of their emotional expressions , 2009, Social neuroscience.

[51]  B. Gelder Towards the neurobiology of emotional body language , 2006, Nature Reviews Neuroscience.

[52]  Juha Silvanto,et al.  Using state‐dependency of transcranial magnetic stimulation (TMS) to investigate letter selectivity in the left posterior parietal cortex: a comparison of TMS‐priming and TMS‐adaptation paradigms , 2008, The European journal of neuroscience.

[53]  M. Candidi,et al.  Representation of body identity and body actions in extrastriate body area and ventral premotor cortex , 2007, Nature Neuroscience.

[54]  Aina Puce,et al.  Electrophysiology and brain imaging of biological motion. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[55]  P. Downing,et al.  Functional characterisation of the extrastriate body area based on the N1 ERP component , 2010, Brain and Cognition.

[56]  R. Blake,et al.  Brain Areas Active during Visual Perception of Biological Motion , 2002, Neuron.

[57]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[58]  Maggie Shiffrar,et al.  Socially tuned: Brain responses differentiating human and animal motion , 2012, Social neuroscience.

[59]  R. Hari,et al.  Temporal dynamics of cortical representation for action. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[60]  E. Wassermann Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996. , 1998, Electroencephalography and clinical neurophysiology.

[61]  R. Nebes,et al.  Patterns of Hand Preference in a Student Population , 1975, Cortex.

[62]  N. Kanwisher,et al.  The Human Body , 2001 .

[63]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[64]  R. Ilmoniemi,et al.  Functional links between motor and language systems , 2005, The European journal of neuroscience.

[65]  J. Rothwell,et al.  How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition , 2009, Cortex.

[66]  G. Orban,et al.  Specificity of regions processing biological motion , 2005, The European journal of neuroscience.

[67]  Juha Silvanto,et al.  Transcranial magnetic stimulation reveals the content of visual short-term memory in the visual cortex , 2010, NeuroImage.

[68]  Jeannette A. M. Lorteije,et al.  Delayed Response to Animate Implied Motion in Human Motion Processing Areas , 2006, Journal of Cognitive Neuroscience.

[69]  M. Lappe,et al.  Visual areas involved in the perception of human movement from dynamic form analysis , 2005, Neuroreport.

[70]  L. Fadiga,et al.  The Motor Somatotopy of Speech Perception , 2009, Current Biology.

[71]  P. Matthews The effect of firing on the excitability of a model motoneurone and its implications for cortical stimulation , 1999, The Journal of physiology.

[72]  Kevin A. Pelphrey,et al.  Grasping the Intentions of Others: The Perceived Intentionality of an Action Influences Activity in the Superior Temporal Sulcus during Social Perception , 2004, Journal of Cognitive Neuroscience.

[73]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[74]  Juha Silvanto,et al.  Baseline cortical excitability determines whether TMS disrupts or facilitates behavior. , 2008, Journal of neurophysiology.

[75]  Tomás Paus,et al.  Transcranial Magnetic Stimulation of the Human Frontal Eye ®eld Facilitates Visual Awareness , 2022 .

[76]  J. Decety,et al.  Neural mechanisms subserving the perception of human actions , 1999, Trends in Cognitive Sciences.

[77]  N. Hadjikhani,et al.  Fear fosters flight: a mechanism for fear contagion when perceiving emotion expressed by a whole body. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[78]  G. Rizzolatti,et al.  Understanding motor events: a neurophysiological study , 2004, Experimental Brain Research.

[79]  F. M. Mottaghy,et al.  Facilitation of picture naming by focal transcranial magnetic stimulation of Wernicke’s area , 1998, Experimental Brain Research.

[80]  Alan C. Evans,et al.  Specific Involvement of Human Parietal Systems and the Amygdala in the Perception of Biological Motion , 1996, The Journal of Neuroscience.