Sexual Reproduction and the Evolution of Microbial Pathogens

[1]  H. Roman,et al.  Studies of Polyploid Saccharomyces. I. Tetraploid Segregation. , 1955, Genetics.

[2]  M. Gallegly The nature of sexuality in Phytophthora infestans. , 1960 .

[3]  K. Kwon-Chung A new genus, filobasidiella, the perfect state of Cryptococcus neoformans. , 1975, Mycologia.

[4]  K. Kwon-Chung Morphogenesis of Filobasidiella neoformans, the sexual state of Cryptococcus neoformans. , 1976, Mycologia.

[5]  R. Fromtling,et al.  Cryptococcus neoformans: size range of infectious particles from aerosolized soil , 1977, Infection and immunity.

[6]  E. Pfefferkorn,et al.  Development of gametes and oocysts in cats fed cysts derived from cloned trophozoites of Toxoplasma gondii. , 1977, The Journal of parasitology.

[7]  K. Kwon-Chung,et al.  DISTRIBUTION OF α AND α MATING TYPES OF CRYPTOCOCCUS NEOFORMANS AMONG NATURAL AND CLINICAL ISOLATES , 1978 .

[8]  E. Pfefferkorn,et al.  Toxoplasma gondii: genetic recombination between drug resistant mutants. , 1980, Experimental parasitology.

[9]  A. Tait,et al.  Evidence for diploidy and mating in trypanosomes , 1980, Nature.

[10]  Sex determination and sex differentiation in Isospora (Toxoplasma) gondii. , 1981, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[11]  G. Bulmer,et al.  Particle size of airborn Cryptococcus neoformans in a tower , 1981, Applied and environmental microbiology.

[12]  A. Cornelissen,et al.  Sex determination and sex differentiation in coccidia: gametogony and oocyst production after monoclonal infection of cats with free-living and intermediate host stages of Isospora (Toxoplasma) gondii , 1985, Parasitology.

[13]  W. Fry,et al.  Genetics of Phytophthora infestans: characterization of single-oospore cultures from A1 isolates induced to self by intraspecific stimulation , 1986 .

[14]  J. Schweizer,et al.  Trypanosome hybrids generated in tsetse flies by nuclear fusion. , 1986, The EMBO journal.

[15]  I. Herskowitz,et al.  Activation of meiosis and sporulation by repression of the RME1 product in yeast , 1986, Nature.

[16]  J. Schweizer,et al.  Hybrid formation between African trypanosomes during cyclical transmission , 1986, Nature.

[17]  W. Fry,et al.  Genetics of Phytophthora infestans: determination of recombination, segregation, and selfing by isozyme analysis , 1986 .

[18]  W. Gibson Analysis of a genetic cross between Trypanosoma brucei rhodesiense and T. b. brucei , 1989, Parasitology.

[19]  C. Turner,et al.  Gene exchange in African trypanosomes: frequency and allelic segregation. , 1989, Molecular and biochemical parasitology.

[20]  C. Turner,et al.  Evidence that the mechanism of gene exchange in Trypanosoma brucei involves meiosis and syngamy , 1990, Parasitology.

[21]  Leland H. Hartwell,et al.  Courtship in S. cerevisiae: Both cell types choose mating partners by responding to the strongest pheromone signal , 1990, Cell.

[22]  F J Ayala,et al.  A clonal theory of parasitic protozoa: The population structures of Entamoeba, Giardia, Leishmania, Naegleria, Plasmodium, Trichomonas, and Trypanosoma and their medical and taxonomical consequences , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[23]  I. Herskowitz,et al.  The yeast RME1 gene encodes a putative zinc finger protein that is directly repressed by a1-alpha 2. , 1991, Genes & development.

[24]  C. Chapman,et al.  Evidence of genetic recombination in Leishmania. , 1991, Molecular and biochemical parasitology.

[25]  F. Ayala,et al.  Towards a population genetics of microorganisms: The clonal theory of parasitic protozoa. , 1991, Parasitology today.

[26]  L. David Sibley,et al.  Virulent strains of Toxoplasma gondii comprise a single clonal lineage , 1992, Nature.

[27]  P. Bastien,et al.  Leishmania: sex, lies and karyotype. , 1992, Parasitology today.

[28]  B. Wickes,et al.  Genetic association of mating types and virulence in Cryptococcus neoformans , 1992, Infection and immunity.

[29]  S. B. Goodwin,et al.  Clonal diversity and genetic differentiation of phytophthora infestans populations in Northern and Central Mexico , 1992 .

[30]  P. Linder,et al.  The Early days of yeast genetics , 1993 .

[31]  B. Cohen,et al.  Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  W. Gibson,et al.  Genetic exchange in Trypanosoma brucei: evidence for meiosis from analysis of a cross between drug-resistant transformants. , 1994, Molecular and biochemical parasitology.

[33]  M. Miles,et al.  A putative Leishmania panamensis/Leishmania braziliensis hybrid is a causative agent of human cutaneous leishmaniasis in Nicaragua , 1994, Parasitology.

[34]  H. Judelson,et al.  Genetic mapping and non-Mendelian segregation of mating type loci in the oomycete, Phytophthora infestans. , 1995, Genetics.

[35]  L. Sibley,et al.  Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. , 1995, The Journal of infectious diseases.

[36]  S. B. Goodwin,et al.  Rapid evolution of pathogenicity within clonal lineages of the potato late blight disease fungus , 1995 .

[37]  T. G. Mitchell,et al.  Molecular markers reveal that population structure of the human pathogen Candida albicans exhibits both clonality and recombination. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Matthew K. Waldor,et al.  Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin , 1996, Science.

[39]  B. Wickes,et al.  Dimorphism and haploid fruiting in Cryptococcus neoformans: association with the alpha-mating type. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[40]  H. Judelson Genetic and physical variability at the mating type locus of the oomycete, Phytophthora infestans. , 1996, Genetics.

[41]  T. White,et al.  Human pathogeneic fungi and their close nonpathogenic relatives. , 1996, Molecular phylogenetics and evolution.

[42]  C. Turner,et al.  Self-fertilisation in Trypanosoma brucei. , 1996, Molecular and biochemical parasitology.

[43]  F. Ayala,et al.  Plasmodium falciparum antigenic diversity: evidence of clonal population structure. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  M. Tibayrenc,et al.  Evidence for Hybridization by Multilocus Enzyme Electrophoresis and Random Amplified Polymorphic DNA Between Leishmania braziliensis and Leishmania panamensis/guyanensis in Ecuador , 1997, The Journal of eukaryotic microbiology.

[45]  W. Gibson,et al.  Intraclonal mating in Trypanosoma brucei is associated with out-crossing. , 1997, Microbiology.

[46]  H. Judelson,et al.  Mating-type loci segregate aberrantly in Phytophthora infestans but normally in Phytophthora parasitica: implications for models of mating-type determination , 1997, Current Genetics.

[47]  H. Judelson Expression and Inheritance of Sexual Preference and Selfing Potential inPhytophthora infestans , 1997 .

[48]  R. Sinden,et al.  The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro , 1997, Parasitology.

[49]  Pathogenicity of basidiospores of Filobasidiella neoformans var. neoformans. , 1998, Medical mycology.

[50]  R. Sinden,et al.  Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito , 1998, Nature.

[51]  L. Casselton,et al.  Molecular Genetics of Mating Recognition in Basidiomycete Fungi , 1998, Microbiology and Molecular Biology Reviews.

[52]  S Ie,et al.  Cryptococcus neoformans. , 1998, The Journal of the Louisiana State Medical Society : official organ of the Louisiana State Medical Society.

[53]  H. Judelson,et al.  Recombination pathways in Phytophthora infestans : polyploidy resulting from aberrant sexual development and zoospore-mediated heterokaryosis , 1998 .

[54]  F. Ayala,et al.  Malaria's Eve: evidence of a recent population bottleneck throughout the world populations of Plasmodium falciparum. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Conway,et al.  High recombination rate in natural populations of Plasmodium falciparum. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  J. Heitman,et al.  The STE12alpha homolog is required for haploid filamentation but largely dispensable for mating and virulence in Cryptococcus neoformans. , 1999, Genetics.

[57]  B. Levin,et al.  Population biology, evolution, and infectious disease: convergence and synthesis. , 1999, Science.

[58]  J C Wootton,et al.  A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. , 1999, Science.

[59]  Christina M. Hull,et al.  Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans. , 1999, Science.

[60]  J. Hey Parasite populations: The puzzle of Plasmodium , 1999, Current Biology.

[61]  M. Krockenberger,et al.  Presence of α and a Mating Types in Environmental and Clinical Collections of Cryptococcus neoformans var. gattii Strains from Australia , 1999, Journal of Clinical Microbiology.

[62]  D. S. Shaw,et al.  The detection of nonhybrid, trisomic, and triploid offspring in sexual progeny of a mating of Phytophthora infestans. , 1999, Fungal genetics and biology : FG & B.

[63]  J. Heitman,et al.  Cryptococcus neoformans Differential Gene Expression Detected In Vitro and In Vivo with Green Fluorescent Protein , 1999, Infection and Immunity.

[64]  F. Ayala,et al.  Population structure and recent evolution of Plasmodium falciparum. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[65]  P. T. Magee,et al.  Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. , 2000, Science.

[66]  J. Heitman,et al.  Identification of the MATa mating-type locus of Cryptococcus neoformans reveals a serotype A MATa strain thought to have been extinct. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[67]  C. Smart,et al.  Implications of Sexual Reproduction for Phytophthora infestans in the United States: Generation of an Aggressive Lineage. , 2000, Plant disease.

[68]  J. Boothroyd,et al.  Lytic Cycle of Toxoplasma gondii , 2000, Microbiology and Molecular Biology Reviews.

[69]  J. T. Williams,et al.  Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. , 2000, Molecular biology and evolution.

[70]  C. Smart,et al.  A Novel Population of Phytophthora, Similar to P. infestans, Attacks Wild Solanum Species in Ecuador. , 2000, Phytopathology.

[71]  A. Johnson,et al.  Evidence for mating of the "asexual" yeast Candida albicans in a mammalian host. , 2000, Science.

[72]  B. Wickes,et al.  Cryptococcus neoformans STE12α Regulates Virulence but Is Not Essential for Mating , 2000, The Journal of experimental medicine.

[73]  A. Sturbaum,et al.  Population Structure of Phytophthora infestans in the Toluca Valley Region of Central Mexico. , 2001, Phytopathology.

[74]  C. A. Machado,et al.  Nucleotide sequences provide evidence of genetic exchange among distantly related lineages of Trypanosoma cruzi , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[75]  D. Hartl,et al.  Recent Origin of Plasmodium falciparum from a Single Progenitor , 2001, Science.

[76]  L. Bingle,et al.  A novel GFP approach for the analysis of genetic exchange in trypanosomes allowing the in situ detection of mating events. , 2001, Microbiology.

[77]  A. MacLeod,et al.  The population genetics of Trypanosoma brucei and the origin of human infectivity. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  Nancy F. Hansen,et al.  Genomic evidence for a complete sexual cycle in Candida albicans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[79]  A. Hehl,et al.  Success and Virulence in Toxoplasma as the Result of Sexual Recombination Between Two Distinct Ancestries , 2001, Science.

[80]  Rolf Bernander,et al.  Genome ploidy in different stages of the Giardia lamblia life cycle , 2001, Cellular microbiology.

[81]  T. Jones,et al.  Infrequent Genetic Exchange and Recombination in the Mitochondrial Genome of Candida albicans , 2001, Journal of bacteriology.

[82]  J. Ristaino,et al.  PCR amplification of the Irish potato famine pathogen from historic specimens , 2001, Nature.

[83]  M. Tibayrenc,et al.  Evidence for clonal propagation in natural isolates of Plasmodium falciparum from Venezuela , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[84]  E. Winzeler,et al.  The paradoxical population genetics of Plasmodium falciparum. , 2002, Trends in parasitology.

[85]  Joseph Heitman,et al.  Cell identity and sexual development in Cryptococcus neoformans are controlled by the mating-type-specific homeodomain protein Sxi1alpha. , 2002, Genes & development.

[86]  J. Heitman,et al.  Mating-Type-Specific and Nonspecific PAK Kinases Play Shared and Divergent Roles in Cryptococcus neoformans , 2002, Eukaryotic Cell.

[87]  B. Wickes The role of mating type and morphology in Cryptococcus neoformans pathogenesis. , 2002, International journal of medical microbiology : IJMM.

[88]  G. Forbes,et al.  Potential of sexual reproduction among host‐adapted populations of Phytophthora infestans sensu lato in Ecuador , 2002 .

[89]  F. Ayala,et al.  The clonal theory of parasitic protozoa: 12 years on. , 2002, Trends in parasitology.

[90]  T. C. White,et al.  Homozygosity at the Candida albicans MTL locus associated with azole resistance. , 2002, Microbiology.

[91]  J. Dubey,et al.  Identification of quantitative trait loci controlling acute virulence in Toxoplasma gondii , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[92]  S. Otto,et al.  Evolution of sex: Resolving the paradox of sex and recombination , 2002, Nature Reviews Genetics.

[93]  D. Soll,et al.  In Candida albicans, white-opaque switchers are homozygous for mating type. , 2002, Genetics.

[94]  J. Heitman,et al.  Genetics of Cryptococcus neoformans. , 2002, Annual review of genetics.

[95]  J. Heitman,et al.  Mating-Type Locus of Cryptococcus neoformans: a Step in the Evolution of Sex Chromosomes , 2002, Eukaryotic Cell.

[96]  J. Ristaino Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. , 2002, Microbes and infection.

[97]  Alexander D. Johnson,et al.  White-Opaque Switching in Candida albicans Is Controlled by Mating-Type Locus Homeodomain Proteins and Allows Efficient Mating , 2002, Cell.

[98]  G. Miller,et al.  Importance of a Developmentally Regulated Pheromone Receptor of Cryptococcus neoformans for Virulence , 2003, Infection and Immunity.

[99]  R. Bennett,et al.  Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains , 2003, The EMBO journal.

[100]  J. Heitman,et al.  Sexual cycle of Cryptococcus neoformans var. grubii and virulence of congenic a and alpha isolates. , 2003, Infection and immunity.

[101]  D. Soll,et al.  Skin Facilitates Candida albicans Mating , 2003, Infection and Immunity.

[102]  Alexander D. Johnson,et al.  Candida albicans , 2003 .

[103]  M. Miles,et al.  Mechanism of genetic exchange in American trypanosomes , 2003, Nature.

[104]  A. Sturbaum,et al.  The Population Structure of Phytophthora infestans from the Toluca Valley of Central Mexico Suggests Genetic Differentiation Between Populations from Cultivated Potato and Wild Solanum spp. , 2003, Phytopathology.

[105]  D. Soll,et al.  Drug Resistance Is Not Directly Affected by Mating Type Locus Zygosity in Candida albicans , 2003, Antimicrobial Agents and Chemotherapy.

[106]  B. Wickes,et al.  Haploid fruiting in Cryptococcus neoformans is not mating type α-specific , 2003 .

[107]  H. Judelson,et al.  Chromosomal heteromorphism and an apparent translocation detected using a BAC contig spanning the mating type locus of Phytophthora infestans. , 2003, Fungal genetics and biology : FG & B.

[108]  T. G. Mitchell,et al.  Evidence of Sexual Recombination among Cryptococcus neoformans Serotype A Isolates in Sub-Saharan Africa , 2003, Eukaryotic Cell.

[109]  J. Heitman,et al.  Sexual Cycle of Cryptococcus neoformans var. grubii and Virulence of Congenic a and α Isolates , 2003, Infection and Immunity.

[110]  D. Carter,et al.  Clonal Reproduction and Limited Dispersal in an Environmental Population of Cryptococcus neoformans var. gattii Isolates from Australia , 2003, Journal of Clinical Microbiology.

[111]  S. Svärd,et al.  Giardia lamblia -- a model organism for eukaryotic cell differentiation. , 2003, FEMS microbiology letters.

[112]  S. Westenberger,et al.  Evidence for multiple hybrid groups in Trypanosoma cruzi. , 2003, International journal for parasitology.

[113]  J. Ajioka,et al.  Recent Expansion of Toxoplasma Through Enhanced Oral Transmission , 2003, Science.

[114]  N. L. Goodman,et al.  Pathogenicity of the basidiospores of Filobasidiella neoformans , 1984, Mycopathologia.

[115]  G. Forbes,et al.  Genetic Diversity of Phytophthora infestans sensu lato in Ecuador Provides New Insight Into the Origin of This Important Plant Pathogen. , 2004, Phytopathology.

[116]  Y. Guan,et al.  Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia , 2004, Nature.

[117]  T. Boekhout,et al.  A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Kami Kim,et al.  Toxoplasma gondii: the model apicomplexan. , 2004, International journal for parasitology.

[119]  Jennifer A Young,et al.  Conserved and Nonconserved Proteins for Meiotic DNA Breakage and Repair in Yeasts , 2004, Genetics.

[120]  M. Demar,et al.  Genetic diversity, clonality and sexuality in Toxoplasma gondii. , 2004, International journal for parasitology.

[121]  P. T. Magee,et al.  Homozygosity at the MTL locus in clinical strains of Candida albicans: karyotypic rearrangements and tetraploid formation † , 2004, Molecular microbiology.

[122]  F. Govers,et al.  High-Density Genetic Linkage Maps of Phytophthora infestans Reveal Trisomic Progeny and Chromosomal Rearrangements , 2004, Genetics.

[123]  R. Tewari,et al.  Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite , 2004, Cell.

[124]  F. Bakker,et al.  Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. , 2004, Fungal genetics and biology : FG & B.

[125]  J. Ristaino,et al.  Identity of the mtDNA haplotype(s) of Phytophthora infestans in historical specimens from the Irish potato famine. , 2004, Mycological research.

[126]  J. Heitman,et al.  Convergent Evolution of Chromosomal Sex-Determining Regions in the Animal and Fungal Kingdoms , 2004, PLoS biology.

[127]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[128]  T. Lehmann,et al.  Variation in the structure of Toxoplasma gondii and the roles of selfing, drift, and epistatic selection in maintaining linkage disequilibria. , 2004, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[129]  J. Heitman,et al.  Clinical and Environmental Isolates of Cryptococcus gattii from Australia That Retain Sexual Fecundity , 2005, Eukaryotic Cell.

[130]  M. Llewellyn,et al.  Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. , 2005, International journal for parasitology.

[131]  F. Ayala,et al.  "Clonal" population structure of the malaria agent Plasmodium falciparum in high-infection regions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[132]  M. Maiden,et al.  Population Structure and Properties of Candida albicans, as Determined by Multilocus Sequence Typing , 2005, Journal of Clinical Microbiology.

[133]  J. Latgé,et al.  Evidence for Sexuality in the Opportunistic Fungal Pathogen Aspergillus fumigatus , 2005, Current Biology.

[134]  B. Haas,et al.  The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease , 2005, Science.

[135]  Jianping Xu,et al.  Comparative Gene Genealogies Indicate that Two Clonal Lineages of Cryptococcus gattii in British Columbia Resemble Strains from Other Geographical Areas , 2005, Eukaryotic Cell.

[136]  M. Tibayrenc,et al.  Population structure of malaria parasites: the driving epidemiological forces. , 2005, Acta tropica.

[137]  S. Westenberger,et al.  Two Hybridization Events Define the Population Structure of Trypanosoma cruzi , 2005, Genetics.

[138]  H. Judelson Chromosomal heteromorphism linked to the mating type locus of the oomycetePhytophthora infestans , 1996, Molecular and General Genetics MGG.

[139]  Harmit S. Malik Mimulus finds centromeres in the driver's seat. , 2005, Trends in ecology & evolution.

[140]  Daniel Nilsson,et al.  Comparative Genomics of Trypanosomatid Parasitic Protozoa , 2005, Science.

[141]  T. G. Mitchell,et al.  Cryptococcus neoformans α Strains Preferentially Disseminate to the Central Nervous System during Coinfection , 2005, Infection and Immunity.

[142]  T. G. Mitchell,et al.  Interaction Between Genetic Background and the Mating-Type Locus in Cryptococcus neoformans Virulence Potential , 2005, Genetics.

[143]  Heather J Munden,et al.  The Genome of the Kinetoplastid Parasite, Leishmania major , 2005, Science.

[144]  T. G. Mitchell,et al.  Comparative Analysis of Environmental and Clinical Populations of Cryptococcus neoformans , 2005, Journal of Clinical Microbiology.

[145]  V. Zismann,et al.  Mitochondrial genome sequences and molecular evolution of the Irish potato famine pathogen, Phytophthora infestans , 2005, Current Genetics.

[146]  J. Raser,et al.  Noise in Gene Expression: Origins, Consequences, and Control , 2005, Science.

[147]  J. Heitman,et al.  Sexual reproduction between partners of the same mating type in Cryptococcus neoformans , 2005, Nature.

[148]  J. Heitman,et al.  Deciphering the Model Pathogenic Fungus Cryptococcus Neoformans , 2005, Nature Reviews Microbiology.

[149]  Christina A. Cuomo,et al.  Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae , 2005, Nature.

[150]  A. MacLeod,et al.  Allelic segregation and independent assortment in T. brucei crosses: proof that the genetic system is Mendelian and involves meiosis. , 2005, Molecular and biochemical parasitology.

[151]  N. Grünwald,et al.  The biology of Phytophthora infestans at its center of origin. , 2005, Annual review of phytopathology.

[152]  Matthias Mann,et al.  Proteome Analysis of Separated Male and Female Gametocytes Reveals Novel Sex-Specific Plasmodium Biology , 2005, Cell.

[153]  F. Balloux,et al.  Tackling the population genetics of clonal and partially clonal organisms. , 2005, Trends in ecology & evolution.

[154]  Wei Wu,et al.  Increased Virulence and Competitive Advantage of a/α Over a/a or α/α Offspring Conserves the Mating System of Candida albicans , 2005, Genetics.

[155]  P. R. Kraus,et al.  Cryptococcus neoformans Gene Expression during Murine Macrophage Infection , 2005, Eukaryotic Cell.

[156]  J. Heitman,et al.  Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak , 2005, Nature.

[157]  P. T. Magee,et al.  Effects of Ploidy and Mating Type on Virulence of Candida albicans , 2005, Infection and Immunity.

[158]  J. Logsdon,et al.  A Phylogenomic Inventory of Meiotic Genes Evidence for Sex in Giardia and an Early Eukaryotic Origin of Meiosis , 2005, Current Biology.

[159]  Christopher R. Jones,et al.  Sex increases the efficacy of natural selection in experimental yeast populations , 2005, Nature.

[160]  M. Maxon,et al.  Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene , 2005, Molecular microbiology.

[161]  J. Heitman,et al.  Clonality and Recombination in Genetically Differentiated Subgroups of Cryptococcus gattii , 2005, Eukaryotic Cell.

[162]  William H. Majoros,et al.  Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus , 2005, Nature.

[163]  N. Hall,et al.  The genetic map and comparative analysis with the physical map of Trypanosoma brucei , 2005, Nucleic acids research.

[164]  L. Kohn Mechanisms of fungal speciation. , 2005, Annual review of phytopathology.

[165]  G. Cerqueira,et al.  Trypanosoma cruzi mitochondrial maxicircles display species- and strain-specific variation and a conserved element in the non-coding region , 2006, BMC Genomics.

[166]  D. Carter,et al.  Looking for sex in the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. , 2006, FEMS yeast research.

[167]  T. G. Mitchell,et al.  Multilocus Sequence Typing Reveals Three Genetic Subpopulations of Cryptococcus neoformans var. grubii (Serotype A), Including a Unique Population in Botswana , 2006, Genetics.

[168]  W. Gibson,et al.  Analysis of a cross between green and red fluorescent trypanosomes. , 2006, Biochemical Society transactions.

[169]  S. D. Pena,et al.  Ancestral Genomes, Sex, and the Population Structure of Trypanosoma cruzi , 2006, PLoS pathogens.

[170]  D. Diogo,et al.  Multilocus Sequence Typing Reveals Intrafamilial Transmission and Microevolutions of Candida albicans Isolates from the Human Digestive Tract , 2006, Journal of Clinical Microbiology.

[171]  R. McCulloch,et al.  Trypanosoma brucei DMC1 does not act in DNA recombination, repair or antigenic variation in bloodstream stage cells. , 2006, Molecular and biochemical parasitology.

[172]  D. Soll,et al.  Opaque cells signal white cells to form biofilms in Candida albicans , 2006, The EMBO journal.

[173]  F. Lutzoni,et al.  Low Genetic Variation and No Detectable Population Structure in Aspergillus fumigatus Compared to Closely Related Neosartorya Species , 2006, Eukaryotic Cell.

[174]  T. G. Mitchell,et al.  Virulence Attributes and Hyphal Growth of C. neoformans Are Quantitative Traits and the MATα Allele Enhances Filamentation , 2006, PLoS genetics.

[175]  S. Westenberger,et al.  Trypanosoma cruzi 5S rRNA arrays define five groups and indicate the geographic origins of an ancestor of the heterozygous hybrids. , 2006, International journal for parasitology.

[176]  J. Heitman,et al.  Sex and virulence of human pathogenic fungi. , 2007, Advances in genetics.

[177]  Jeffrey W. Smith,et al.  Stochastic Gene Expression in a Single Cell , 2022 .