Quantum Pushdown Automata with a Garbage Tape

Several kinds of quantum pushdown automata models have been proposed, and their computational power has been investigated intensively. However, for some quantum pushdown automaton models, it is unk...

[1]  Andris Ambainis,et al.  Algebraic Results on Quantum Automata , 2005, Theory of Computing Systems.

[2]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[3]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  Mika Hirvensalo,et al.  Quantum Automata with Open Time Evolution , 2010, Int. J. Nat. Comput. Res..

[5]  Maksim Kravtsev Quantum Finite One-Counter Automata , 1999, SOFSEM.

[6]  Mika Hirvensalo,et al.  Various Aspects of Finite Quantum Automata , 2008, Developments in Language Theory.

[7]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[8]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[9]  Antoine Amarilli,et al.  A Proof of the Pumping Lemma for Context-Free Languages Through Pushdown Automata , 2012, ArXiv.

[10]  Rusins Freivalds,et al.  Fast Probabilistic Algorithms , 1979, MFCS.

[11]  Masaki Nakanishi,et al.  Quantum versus Classical Pushdown Automata in Exact Computation , 2005 .

[12]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[13]  Marats Golovkins,et al.  Quantum Pushdown Automata , 2000, SOFSEM.

[14]  Massimo Pica Ciamarra Quantum Reversibility and a New Model of Quantum Automaton , 2001, FCT.

[15]  Tomoyuki Yamakami,et al.  One-way reversible and quantum finite automata with advice , 2012, Inf. Comput..

[16]  Rusins Freivalds,et al.  Quantum Computation with Devices Whose Contents Are Never Read , 2010, UC.

[17]  Andris Ambainis,et al.  Superiority of exact quantum automata for promise problems , 2011, Inf. Process. Lett..

[18]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[19]  A. C. Cem Say,et al.  Quantum Counter Automata , 2012, Int. J. Found. Comput. Sci..

[20]  Daowen Qiu,et al.  Simulations of Quantum Turing Machines by Quantum Multi-Stack Machines , 2005 .

[21]  Abuzer Yakaryilmaz,et al.  Superiority of one-way and realtime quantum machines , 2011, RAIRO Theor. Informatics Appl..

[22]  A. C. Cem Say,et al.  Efficient probability amplification in two-way quantum finite automata , 2009, Theor. Comput. Sci..

[23]  Hiroshi Imai,et al.  One-Way Probabilistic Reversible and Quantum One-Counter Automata , 2000, COCOON.

[24]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[25]  Rusins Freivalds,et al.  Quantum versus Probabilistic One-Way Finite Automata with Counter , 2001, SOFSEM.

[26]  Hiroshi Imai,et al.  Quantum versus Deterministic Counter Automata , 2002, COCOON.

[27]  William F. Ogden,et al.  A helpful result for proving inherent ambiguity , 1968, Mathematical systems theory.

[28]  Kathrin Paschen Quantum finite automata using ancilla qubits , 2000 .

[29]  Kamil Khadiev,et al.  Very narrow quantum OBDDs and width hierarchies for classical OBDDs , 2014, DCFS.

[30]  Masaki Nakanishi,et al.  Expressive Power of Quantum Pushdown Automata with Classical Stack Operations under the Perfect-Soundness Condition , 2006, IEICE Trans. Inf. Syst..

[31]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  Kazuo Iwama,et al.  Undecidability on quantum finite automata , 1999, STOC '99.

[33]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[34]  A. C. Cem Say,et al.  Succinctness of two-way probabilistic and quantum finite automata , 2009, Discret. Math. Theor. Comput. Sci..

[35]  Shenggen Zheng,et al.  Two-Tape Finite Automata with Quantum and Classical States , 2011, 1104.3634.