Implementation of equilibrium aqueous speciation and solubility (EQ3 type) calculations into Cantera for electrolyte solutions.

In this report, we summarize our work on developing a production level capability for modeling brine thermodynamic properties using the open-source code Cantera. This implementation into Cantera allows for the application of chemical thermodynamics to describe the interactions between a solid and an electrolyte solution at chemical equilibrium. The formulations to evaluate the thermodynamic properties of electrolytes are based on Pitzer's model to calculate molality-based activity coefficients using a real equation-of-state (EoS) for water. In addition, the thermodynamic properties of solutes at elevated temperature and pressures are computed using the revised Helgeson-Kirkham-Flowers (HKF) EoS for ionic and neutral aqueous species. The thermodynamic data parameters for the Pitzer formulation and HKF EoS are from the thermodynamic database compilation developed for the Yucca Mountain Project (YMP) used with the computer code EQ3/6. We describe the adopted equations and their implementation within Cantera and also provide several validated examples relevant to the calculations of extensive properties of electrolyte solutions.

[1]  Harry K. Moffat,et al.  CADS:Cantera Aerosol Dynamics Simulator. , 2007 .

[2]  Zhi-chang Wang,et al.  Thermodynamics of aqueous complex solutions containing 3/1 rare earth electrolyte pairs and salting-out agents to very high concentrations. , 2007, The journal of physical chemistry. B.

[3]  David G. Goodwin,et al.  Numerical Modeling of Single-Chamber SOFCs with Hydrocarbon Fuels , 2007 .

[4]  W. Bessler,et al.  The influence of equilibrium potential on the hydrogen oxidation kinetics of SOFC anodes , 2007 .

[5]  Vinod M. Janardhanan,et al.  Modeling Elementary Heterogeneous Chemistry and Electrochemistry in Solid-Oxide Fuel Cells , 2005 .

[6]  J. A. Rard,et al.  Conversion and optimization of the parameters from an extended form of the ion-interaction model for Ca(NO3)2(aq) and NaNO3(aq) to those of the standard Pitzer model, and an assessment of the accuracy of the parameter temperature representations , 2005 .

[7]  Christophe Kervévan,et al.  Improvement of the Calculation Accuracy of Acid Gas Solubility in Deep Reservoir Brines: Application to the Geological Storage of CO2 , 2005 .

[8]  M. Azaroual,et al.  SCALE2000: reaction-transport software dedicated to thermokinetic prediction and quantification of scales applicability to desalination problems , 2004 .

[9]  N. Sridhar,et al.  A general model for the repassivation potential as a function of multiple aqueous solution species , 2004 .

[10]  J. A. Rard,et al.  Conversion of parameters between different variants of Pitzer's ion-interaction model, both with and without ionic strength dependent higher-order terms , 2003 .

[11]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[12]  D. G. Archer Thermodynamic Properties of the KCl+H2O System , 1999 .

[13]  John H. Weare,et al.  Computer Modeling for Geothermal Systems: Predicting Carbonate and Silica Scale Formation, CO2 Breakout and H2S Exchange , 1998 .

[14]  J. A. Rard,et al.  Isopiestic Investigation of the Osmotic and Activity Coefficients of Aqueous MgSO4 and the Solubility of MgSO4·7H2O(cr) at 298.15 K: Thermodynamic Properties of the MgSO4 + H2O System to 440 K , 1998 .

[15]  K. Pitzer,et al.  Correlation of Thermodynamic Data for Aqueous Electrolyte Solutions to Very High Ionic Strength Using INSIGHT: Vapor Saturated Water Activity in the System CaCl2-H2O to 250°C and Solid Saturation , 1998 .

[16]  Everett L. Shock,et al.  Standard partial molal properties of aqueous alkylphenols at high pressures and temperatures , 1997 .

[17]  E. Oelkers,et al.  Summary of the Apparent Standard Partial Molal Gibbs Free Energies of Formation of Aqueous Species, Minerals, and Gases at Pressures 1 to 5000 Bars and Temperatures 25 to 1000 °C , 1995 .

[18]  H. Offermann,et al.  Solid-liquid equilibria in the ternary system nacl-kcl-h2o , 1993 .

[19]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[20]  Denny A. Jones Principles and prevention of corrosion , 1991 .

[21]  James W. Johnson,et al.  Critical phenomena in hydrothermal systems; state, thermodynamic, electrostatic, and transport properties of H 2 O in the critical region , 1991 .

[22]  D. G. Archer Thermodynamic Properties of the NaBr+H2O System , 1991 .

[23]  C. Monnin,et al.  The influence of pressure on the activity coefficients of the solutes and on the solubility of minerals in the system Na-Ca-Cl-SO4-H2O to 200°C and 1 kbar and to high NaCl concentration , 1990 .

[24]  John H. Weare,et al.  The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the NaKCaMgClSO4H2O system at temperatures below 25°C , 1990 .

[25]  Jerry P. Greenberg,et al.  The prediction of mineral solubilities in natural waters: A chemical equilibrium model for the Na-K-Ca-Cl-SO4-H2O system to high concentration from 0 to 250°C , 1989 .

[26]  Manfred Wolf,et al.  Solubility of calcite in different electrolytes at temperatures between 10° and 60°C and at CO2 partial pressures of about 1 kPa , 1989 .

[27]  C. Monnin An ion interaction model for the volumetric properties of natural waters: Density of the solution and partial molal volumes of electrolytes to high concentrations at 25°C , 1989 .

[28]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5 kb and 1000°C , 1988 .

[29]  Kenneth S. Pitzer,et al.  Apparent molar heat capacity and other thermodynamic properties of aqueous potassium chloride solutions to high temperatures and pressures , 1988 .

[30]  Kenneth S. Pitzer,et al.  Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na-K-Mg-Cl-SO4-OH-H2O , 1987 .

[31]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .

[32]  E. Clarke,et al.  Evaluation of the Thermodynamic Functions for Aqueous Sodium Chloride from Equilibrium and Calorimetric Measurements below 154 °C , 1985 .

[33]  N. Møller,et al.  The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C , 1984 .

[34]  R. Mesmer,et al.  Isopiestic studies of aqueous solutions at elevated temperatures VII. MgSO4 and NiSO4 , 1983 .

[35]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[36]  M. Uematsu,et al.  Static Dielectric Constant of Water and Steam , 1980 .

[37]  John H. Weare,et al.  The prediction of mineral solubilities in natural waters: the NaKMgCaClSO4H2O system from zero to high concentration at 25° C , 1980 .

[38]  C. Baes,et al.  Isopiestic studies of aqueous solutions at elevated temperatures II. NaCl + KCl mixtures☆ , 1979 .

[39]  Daniel J. Bradley,et al.  Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye-Hueckel parameters to 350.degree.C and 1 kbar , 1979 .

[40]  K. Pitzer,et al.  Thermodynamics of electrolytes. 8. High-temperature properties, including enthalpy and heat capacity, with application to sodium chloride , 1977 .

[41]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures:II. Debye-Huckel parameters for activity coefficients and relative partial molal properties , 1974 .

[42]  H. Helgeson,et al.  Thermodynamics of hydrothermal systems at elevated temperatures and pressures , 1969 .

[43]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species , 2002 .

[44]  David G. Goodwin,et al.  An Open-Source, Extensible Software Suite for CVD Process Simulation , 2002 .

[45]  J. A. Rard,et al.  Isopiestic Determination of the Osmotic Coefficients of Na2SO4(aq) at 25 and 50°C, and Representation with Ion-Interaction (Pitzer) and Mole Fraction Thermodynamic Models , 2000 .

[46]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[47]  Craig M. Bethke,et al.  Geochemical reaction modeling , 1996 .

[48]  David L. Parkhurst,et al.  USER'S GUIDE TO PHREEQC A COMPUTER PROGRAM FOR SPECIATION, REACTION-PATH, ADVECTIVE-TRANSPORT, AND INVERSE GEOCHEMICAL CALCULATIONS , 1995 .

[49]  E. Oelkers,et al.  Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures. Effective electrostatic radii, dissociation constants and standard partial molal properties to 1000 °C and 5 kbar , 1992 .

[50]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[51]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[52]  Steven G. Bratsch,et al.  Standard Electrode Potentials and Temperature Coefficients in Water at 298.15 K , 1989 .

[53]  H. Helgeson,et al.  Calculation of the Thermodynamic and Transport Properties of Aqueous Species at High Pressures and Temperatures; Revised Equations of State for the Standard Partial Molal Properties of Ions and Electrolytes , 1988, American Journal of Science.

[54]  Kenneth S. Pitzer,et al.  Thermodynamic Properties of Aqueous Sodium Chloride Solutions , 1984 .

[55]  K. Pitzer,et al.  Thermodynamics of saturated aqueous solutions including mixtures of NaCl, KCl, and CsCl , 1983 .

[56]  William R. Smith,et al.  Chemical Reaction Equilibrium Analysis: Theory and Algorithms , 1982 .

[57]  Kenneth S. Pitzer,et al.  Volumetric Properties of Aqueous Sodium Chloride Solutions , 1982 .

[58]  J. A. Rard,et al.  Isopiestic determination of the Osmotic coefficients of aqueous sodium sulfate, magnesium sulfate, and sodium sulfate-magnesium sulfate at 25 .degree.C , 1981 .

[59]  H. Helgeson Prediction of the thermodynamic properties of electrolytes at high pressures and temperatures , 1981 .

[60]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[61]  Sergio Caroli,et al.  Tables of standard electrode potentials , 1978 .

[62]  Kenneth S. Pitzer,et al.  Thermodynamics of electrolytes. I. Theoretical basis and general equations , 1973 .

[63]  D. R. Stull JANAF thermochemical tables , 1966 .

[64]  R. Bates,et al.  Determination of pH;: Theory and practice , 1964 .

[65]  R. Parsons,et al.  Calculation of the energy of activation of discharge of hydrogen ions at metal electrodes , 1951 .

[66]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .