Dopamine enhances signal-to-noise ratio in cortical-brainstem encoding of aversive stimuli

Dopamine modulates medial prefrontal cortex (mPFC) activity to mediate diverse behavioural functions1,2; however, the precise circuit computations remain unknown. One potentially unifying model by which dopamine may underlie a diversity of functions is by modulating the signal-to-noise ratio in subpopulations of mPFC neurons3–6, where neural activity conveying sensory information (signal) is amplified relative to spontaneous firing (noise). Here we demonstrate that dopamine increases the signal-to-noise ratio of responses to aversive stimuli in mPFC neurons projecting to the dorsal periaqueductal grey (dPAG). Using an electrochemical approach, we reveal the precise time course of pinch-evoked dopamine release in the mPFC, and show that mPFC dopamine biases behavioural responses to aversive stimuli. Activation of mPFC–dPAG neurons is sufficient to drive place avoidance and defensive behaviours. mPFC–dPAG neurons display robust shock-induced excitations, as visualized by single-cell, projection-defined microendoscopic calcium imaging. Finally, photostimulation of dopamine terminals in the mPFC reveals an increase in the signal-to-noise ratio in mPFC–dPAG responses to aversive stimuli. Together, these data highlight how dopamine in the mPFC can selectively route sensory information to specific downstream circuits, representing a potential circuit mechanism for valence processing.Dopamine in the medial prefrontal cortex modulates behavioural responses to aversive stimuli by increasing the signal-to-noise ratio of neurons projecting to the dorsal periaqueductal grey.

[1]  T. Branco,et al.  Prefrontal cortical control of a brainstem social behavior circuit , 2016, Nature Neuroscience.

[2]  Garret D Stuber,et al.  Construction of implantable optical fibers for long-term optogenetic manipulation of neural circuits , 2011, Nature Protocols.

[3]  A. Gamal,et al.  Miniaturized integration of a fluorescence microscope , 2011, Nature Methods.

[4]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[5]  Jonathan D. Cohen,et al.  Computational perspectives on dopamine function in prefrontal cortex , 2002, Current Opinion in Neurobiology.

[6]  J. Glowinski,et al.  Selective activation of the mesocortical DA system by stress , 1976, Nature.

[7]  Zuoren Wang,et al.  Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors , 2016, The Journal of Neuroscience.

[8]  Stefan R. Pulver,et al.  Independent Optical Excitation of Distinct Neural Populations , 2014, Nature Methods.

[9]  R. Wightman,et al.  Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. , 2003, Clinical chemistry.

[10]  David M. Lovinger,et al.  Parallel, but Dissociable, Processing in Discrete Corticostriatal Inputs Encodes Skill Learning , 2017, Neuron.

[11]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[12]  K. Deisseroth,et al.  eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications , 2008, Brain cell biology.

[13]  R. Wightman,et al.  Assessing principal component regression prediction of neurochemicals detected with fast-scan cyclic voltammetry. , 2011, ACS chemical neuroscience.

[14]  Praneeth Namburi,et al.  Divergent Routing of Positive and Negative Information from the Amygdala during Memory Retrieval , 2016, Neuron.

[15]  James M. Otis,et al.  Prefrontal cortex output circuits guide reward seeking through divergent cue encoding , 2017, Nature.

[16]  Feng Zhang,et al.  Channelrhodopsin-2 and optical control of excitable cells , 2006, Nature Methods.

[17]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[18]  René Hen,et al.  Targeted gene expression in dopamine and serotonin neurons of the mouse brain , 2005, Journal of Neuroscience Methods.

[19]  M. Poo,et al.  Phasic dopamine release in the medial prefrontal cortex enhances stimulus discrimination , 2016, Proceedings of the National Academy of Sciences.

[20]  R. Wise,et al.  Synaptic and Behavioral Profile of Multiple Glutamatergic Inputs to the Nucleus Accumbens , 2012, Neuron.

[21]  Jonathan W. Pillow,et al.  Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex , 2017, Cell.

[22]  James M. Otis,et al.  Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses , 2016, Nature Protocols.

[23]  Talia N. Lerner,et al.  Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain , 2016, Nature Methods.

[24]  D. Weinberger,et al.  Genes, dopamine and cortical signal-to-noise ratio in schizophrenia , 2004, Trends in Neurosciences.

[25]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[26]  Liam Paninski,et al.  Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data , 2016, eLife.

[27]  R. Bandler,et al.  Integrated defence reaction elicited by excitatory amino acid microinjection in the midbrain periaqueductal grey region of the unrestrained cat , 1988, Brain Research.

[28]  Garret D Stuber,et al.  Overoxidation of carbon-fiber microelectrodes enhances dopamine adsorption and increases sensitivity. , 2003, The Analyst.

[29]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Quirk,et al.  Consolidation of Fear Extinction Requires NMDA Receptor-Dependent Bursting in the Ventromedial Prefrontal Cortex , 2007, Neuron.

[31]  Karl Deisseroth,et al.  Midbrain circuits for defensive behaviour , 2016, Nature.

[32]  A. Arnsten Stress signalling pathways that impair prefrontal cortex structure and function , 2009, Nature Reviews Neuroscience.

[33]  R. Wightman,et al.  Multivariate concentration determination using principal component regression with residual analysis. , 2009, Trends in analytical chemistry : TRAC.

[34]  D. R. Euston,et al.  The Role of Medial Prefrontal Cortex in Memory and Decision Making , 2012, Neuron.

[35]  K. Deisseroth,et al.  Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning , 2009, Science.

[36]  P. Novak,et al.  Q-Method for High-Resolution, Whole-Cell Patch-Clamp Impedance Measurements Using Square Wave Stimulation , 2006, Annals of Biomedical Engineering.

[37]  M. J. Zigmond,et al.  Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: Effects of diazepam , 1995, Neuroscience.

[38]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[39]  E. Rolls,et al.  Computational models of schizophrenia and dopamine modulation in the prefrontal cortex , 2008, Nature Reviews Neuroscience.

[40]  B. Schobert,et al.  Halorhodopsin is a light-driven chloride pump. , 1982, The Journal of biological chemistry.

[41]  T. Moore,et al.  CONTROL OF VISUAL CORTICAL SIGNALS BY PREFRONTAL DOPAMINE , 2011, Nature.

[42]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[43]  J. Seamans,et al.  Dopamine Modulates Persistent Synaptic Activity and Enhances the Signal-to-Noise Ratio in the Prefrontal Cortex , 2009, PloS one.

[44]  E. Abercrombie,et al.  Differential Effect of Stress on In Vivo Dopamine Release in Striatum, Nucleus Accumbens, and Medial Frontal Cortex , 1989, Journal of neurochemistry.

[45]  S. Lammel,et al.  Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli , 2011, Neuron.

[46]  J. Glowinski,et al.  Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system , 1989, Brain Research.

[47]  Mark J. Schnitzer,et al.  Automated Analysis of Cellular Signals from Large-Scale Calcium Imaging Data , 2009, Neuron.

[48]  Ilana B. Witten,et al.  Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement , 2011, Neuron.

[49]  Edward H. Nieh,et al.  Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment , 2017, Nature Neuroscience.

[50]  D. C. Weaver The effects of diazepam. , 1969, Anesthesiology.

[51]  Karl Deisseroth,et al.  Visualizing Hypothalamic Network Dynamics for Appetitive and Consummatory Behaviors , 2015, Cell.

[52]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[53]  Stefan R. Pulver,et al.  Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics , 2013, Front. Mol. Neurosci..

[54]  Edward H. Nieh,et al.  Inhibitory Input from the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation , 2016, Neuron.

[55]  P. Goldman-Rakic,et al.  Modulation of memory fields by dopamine Dl receptors in prefrontal cortex , 1995, Nature.

[56]  R. Reep,et al.  Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats , 2009, Nature Protocols.

[57]  O. Danos,et al.  Canine Adenovirus Vectors: an Alternative for Adenovirus-Mediated Gene Transfer , 2000, Journal of Virology.