A mathematical model for the hard sphere repulsion in ionic solutions

We introduce a mathematical model for the finite size (repulsive) effects in ionic solutions. We first introduce an appropriate energy term into the total energy that represents the hard sphere repulsion of ions. The total energy then consists of the entropic energy, electrostatic potential energy, and the repulsive potential energy. The energetic variational approach derives a boundary value problem that includes contributions from the repulsive term with a no flux boundary condition for charge density which is a consequence of the variational approach, and physically implies charge conservation. The resulting system of partial differential equations is a modification of the Poisson-Nernst-Planck (PNP) equations widely if not universally used to describe the drift-diffusion of electrons and holes in semiconductors, and the movement of ions in solutions and protein channels. The modified PNP equations include the effects of the finite size of ions that are so important in the concentrated solutions near electrodes, active sites of enzymes, and selectivity filters of proteins. Finally, we do some numerical experiments using finite element methods, and present their results as a verification of the utility of the modified system.

[1]  J. Barthel,et al.  Conductance of Electrolyte Solutions , 1968 .

[2]  James P. Keener,et al.  Mathematical physiology , 1998 .

[3]  Chun Liu,et al.  ON ELECTRO-KINETIC FLUIDS: ONE DIMENSIONAL CONFIGURATIONS , 2005 .

[4]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  R. M. Fuoss,et al.  CONDUCTANCE OF STRONG ELECTROLYTES AT FINITE DILUTIONS. , 1955, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Ph. A. Martin Sum rules in charged fluids , 1988 .

[7]  P. Sheng,et al.  Electrorheological fluid dynamics. , 2008, Physical review letters.

[8]  Ludmil Zikatanov,et al.  Mathematical models for the deformation of electrolyte droplets , 2007 .

[9]  K. E. Starling,et al.  Equation of State for Nonattracting Rigid Spheres , 1969 .

[10]  B. Eisenberg,et al.  Progress and Prospects in Permeation , 1999, The Journal of general physiology.

[11]  G. Hills,et al.  The conductance of electrolyte solutions , 1973 .

[12]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[13]  Jerome Percus,et al.  Equilibrium state of a classical fluid of hard rods in an external field , 1976 .

[14]  廣瀬雄一,et al.  Neuroscience , 2019, Workplace Attachments.

[15]  Rosenfeld,et al.  Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. , 1989, Physical review letters.

[16]  Joseph W. Jerome,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Mathematical Study , 1997, SIAM J. Appl. Math..

[17]  Isaak Rubinstein Electro-diffusion of ions , 1987 .

[18]  Roland Roth,et al.  A new generalization of the Carnahan-Starling equation of state to additive mixtures of hard spheres. , 2006, The Journal of chemical physics.

[19]  B. Eisenberg,et al.  Steric selectivity in Na channels arising from protein polarization and mobile side chains. , 2007, Biophysical journal.

[20]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[21]  M. Kurnikova,et al.  Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels , 2005, IEEE Transactions on NanoBioscience.

[22]  D. Nicoll,et al.  Sodium-calcium exchange. , 1992, Current opinion in cell biology.

[23]  W. Kunz Specific Ion Effects , 2009 .

[24]  Abraham Nitzan,et al.  Comparison of Dynamic Lattice Monte Carlo Simulations and the Dielectric Self-Energy Poisson-Nernst-Planck Continuum Theory for Model Ion Channels , 2004 .

[25]  A. Hodgkin,et al.  The influence of calcium on sodium efflux in squid axons , 1969, The Journal of physiology.

[26]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[27]  P. Markowich Analysis of the Basic Stationary Semiconductor Device Equations , 1986 .

[28]  A. Hodgkin,et al.  THE IONIC BASIS OF ELECTRICAL ACTIVITY IN NERVE AND MUSCLE , 1951 .

[29]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[30]  J. Yeomans,et al.  Statistical mechanics of phase transitions , 1992 .

[31]  Robert S. Eisenberg,et al.  Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study , 1997, SIAM J. Appl. Math..

[32]  YunKyong Hyon,et al.  Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids. , 2010, The Journal of chemical physics.

[33]  Rolf J. Ryham,et al.  An Energetic Variational Approach to Mathematical Modeling of Charged Fluids: Charge Phases, Simulation and Well Posedness , 2006 .

[34]  W. Fawcett Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details , 2004 .

[35]  Rosenfeld Free-energy model for the inhomogeneous hard-sphere fluid in D dimensions: Structure factors for the hard-disk (D=2) mixtures in simple explicit form. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[36]  A. Hodgkin,et al.  The potassium permeability of a giant nerve fibre , 1955, The Journal of physiology.

[37]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[38]  Robert S. Eisenberg,et al.  Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .

[39]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[40]  D. Gillespie Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. , 2008, Biophysical journal.

[41]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[42]  Weishi Liu,et al.  Poisson-Nernst-Planck Systems for Ion Channels with Permanent Charges , 2007, SIAM J. Math. Anal..

[43]  Charles S. Peskin,et al.  A Three-Dimensional Model of Cellular Electrical Activity , 2007 .

[44]  Lloyd L. Lee,et al.  Molecular Thermodynamics of Electrolyte Solutions , 2008 .

[45]  Jerome K. Percus,et al.  Analysis of Classical Statistical Mechanics by Means of Collective Coordinates , 1958 .

[46]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[47]  A. Hodgkin,et al.  Movement of radioactive potassium and membrane current in a giant axon , 1953, The Journal of physiology.

[48]  D. Kwak,et al.  Energetic variational approach in complex fluids: Maximum dissipation principle , 2009 .

[49]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[50]  M. Blaustein,et al.  Sodium/calcium exchange: its physiological implications. , 1999, Physiological reviews.

[51]  D. Whiffen Thermodynamics , 1973, Nature.

[52]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  H. T. Davis,et al.  The statistical mechanics of inhomogeneous hard rod mixtures , 1989 .

[54]  D. Kinderlehrer,et al.  Approximation of Parabolic Equations Using the Wasserstein Metric , 1999 .

[55]  Y. Rosenfeld,et al.  Statistical mechanics of charged objects: General method and applications to simple systems , 1986 .

[56]  J. Barthel,et al.  Physical Chemistry of Electrolyte Solutions: Modern Aspects , 1998 .

[57]  Dirk Gillespie,et al.  Density functional theory of the electrical double layer: the RFD functional , 2005 .

[58]  Hartmut Löwen,et al.  Fundamental-measure free-energy density functional for hard spheres: Dimensional crossover and freezing , 1997 .

[59]  Joel L. Lebowitz,et al.  Exact Solution of Generalized Percus-Yevick Equation for a Mixture of Hard Spheres , 1964 .

[60]  Amit Singer,et al.  A Poisson--Nernst--Planck Model for Biological Ion Channels---An Asymptotic Analysis in a Three-Dimensional Narrow Funnel , 2009, SIAM J. Appl. Math..

[61]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[62]  Bob Eisenberg,et al.  Living Transistors: a Physicist's View of Ion Channels , 2008 .

[63]  D. Henderson Fundamentals of Inhomogeneous Fluids , 1992 .

[64]  J. Jerome Analysis of Charge Transport , 1996 .

[65]  Roland Roth,et al.  Fundamental measure theory for hard-sphere mixtures: a review , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  H. Ted Davis,et al.  Statistical Mechanics of Phases, Interfaces and Thin Films , 1996 .

[67]  Bob Eisenberg Ionic Channels in Biological Membranes: Natural Nanotubes , 1998 .