Pseudo‐real‐time retinal layer segmentation for high‐resolution adaptive optics optical coherence tomography

We present a pseudo-real-time retinal layer segmentation for high-resolution Sensorless Adaptive Optics-Optical Coherence Tomography (SAO-OCT). Our pseudo-real-time segmentation method is based on Dijkstra's algorithm that uses the intensity of pixels and the vertical gradient of the image to find the minimum cost in a geometric graph formulation within a limited search region. It segments six retinal layer boundaries in an iterative process according to their order of prominence. The segmentation time is strongly correlated to the number of retinal layers to be segmented. Our program permits en face images to be extracted during data acquisition to guide the depth specific focus control and depth dependent aberration correction for high-resolution SAO-OCT systems. The average processing times for our entire pipeline for segmenting six layers in a retinal B-scan of 496x400 pixels and 240x400 pixels are around 25.60 ms and 13.76 ms, respectively. When reducing the number of layers segmented to only two layers, the time required for a 240x400 pixel image is 8.26 ms. This article is protected by copyright. All rights reserved.

[1]  W. Marsden I and J , 2012 .

[2]  Maciej Wojtkowski,et al.  Real time 3D structural and Doppler OCT imaging on graphics processing units , 2013, Photonics West - Biomedical Optics.

[3]  Joseph A Izatt,et al.  Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery. , 2010, Optics letters.

[4]  Justis P. Ehlers,et al.  The value of intraoperative optical coherence tomography imaging in vitreoretinal surgery , 2014, Current opinion in ophthalmology.

[5]  Kevin Wong,et al.  Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit , 2014, Journal of biomedical optics.

[6]  Kazuhiro Kurokawa,et al.  Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited]. , 2017, Biomedical optics express.

[7]  Andrew G. Glen,et al.  APPL , 2001 .

[8]  Austin Roorda,et al.  Adaptive optics retinal imaging: emerging clinical applications. , 2010, Optometry and vision science : official publication of the American Academy of Optometry.

[9]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[10]  Robert J Zawadzki,et al.  Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. , 2017, Biomedical optics express.

[11]  Myeong Jin Ju,et al.  Sensorless adaptive optics optical coherence tomography for two photon excited fluorescence mouse retinal imaging , 2019, European Conference on Biomedical Optics.

[12]  Josef Goette,et al.  FPGA-based real-time swept-source OCT systems for B-scan live-streaming or volumetric imaging , 2013, Photonics West - Biomedical Optics.

[13]  Myeong Jin Ju,et al.  Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging , 2017, Journal of biomedical optics.

[14]  J. Hornegger,et al.  Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients , 2010, Biomedical optics express.

[15]  Hong Jiang,et al.  Automated classifiers for early detection and diagnosis of retinopathy in diabetic eyes , 2013, BMC Bioinformatics.

[16]  Gábor Márk Somfai,et al.  Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region , 2015, PloS one.

[17]  Risto Myllylä,et al.  Fast retinal layer identification for optical coherence tomography images , 2011, BiOS.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Yifan Jian,et al.  Strip-based registration of serially acquired optical coherence tomography angiography , 2017, Journal of biomedical optics.

[20]  Andrew M. Rollins,et al.  Integrative Advances for OCT-Guided Ophthalmic Surgery and Intraoperative OCT: Microscope Integration, Surgical Instrumentation, and Heads-Up Display Surgeon Feedback , 2014, 2015 Conference on Lasers and Electro-Optics (CLEO).

[21]  Lesley Shannon,et al.  Evaluating the scalability of high-performance, Fourier-Domain Optical Coherence Tomography on GPGPUs and FPGAs , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[22]  Daniel X. Hammer,et al.  Trans-retinal cellular imaging with multimodal adaptive optics , 2018, Biomedical optics express.

[23]  Joseph A. Izatt,et al.  Optical Coherence Tomography for Retinal Surgery: Perioperative Analysis to Real-Time Four-Dimensional Image-Guided Surgery , 2016, Investigative ophthalmology & visual science.

[24]  Kevin Wong,et al.  Graphics processing unit accelerated optical coherence tomography processing at megahertz axial scan rate and high resolution video rate volumetric rendering , 2013, Journal of biomedical optics.

[25]  Mohamed T. El-Haddad,et al.  Advances in intraoperative optical coherence tomography for surgical guidance , 2017 .

[26]  David R. Holmes,et al.  Medical Imaging 2013: Image-Guided Procedures, Robotic Interventions, and Modeling, Lake Buena Vista (Orlando Area), Florida, United States, 9-14 February 2013 , 2013, Medical Imaging: Image-Guided Procedures.

[27]  Suhwan Kim,et al.  High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging , 2013 .

[28]  Cathy Frey,et al.  Investigative Ophthalmology and Visual Science , 2010 .

[29]  Daniel X Hammer,et al.  Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array. , 2008, The Review of scientific instruments.

[30]  Joey Huang,et al.  Real time volumetric region of interest tracking for sensorless adaptive optics retinal imaging , 2019, European Conference on Biomedical Optics.

[31]  Alexander Sorkine-Hornung,et al.  Cache-efficient graph cuts on structured grids , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3 D retinal in vivo imaging , 2005 .

[33]  Sina Farsiu,et al.  Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. , 2011, Investigative ophthalmology & visual science.

[34]  Roy D. Yates,et al.  Conference Record - Asilomar Conference on Signals, Systems and Computers: Foreword , 2007, ASILOMAR 2007.

[35]  Joseph A. Izatt,et al.  Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT , 2018, Biomedical optics express.

[36]  Yali Jia,et al.  Real-time cross-sectional and en face OCT angiography guiding high-quality scan acquisition. , 2019, Optics letters.

[37]  David Huang,et al.  Advanced image processing for optical coherence tomographic angiography of macular diseases. , 2015, Biomedical optics express.

[38]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[39]  Wen-mei W. Hwu,et al.  GPU Computing Gems Emerald Edition , 2011 .

[40]  Omer P. Kocaoglu,et al.  A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future , 2016, Investigative ophthalmology & visual science.

[41]  Lesley Shannon,et al.  Scalable, High Performance Fourier Domain Optical Coherence Tomography: Why FPGAs and Not GPGPUs , 2011, 2011 IEEE 19th Annual International Symposium on Field-Programmable Custom Computing Machines.

[42]  David Williams Imaging single cells in the living retina , 2011, Vision Research.

[43]  Joseph A. Izatt,et al.  Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation , 2010, Optics express.

[44]  Christian M. Oh,et al.  GPU accelerated real-time multi-functional spectral-domain optical coherence tomography system at 1300nm , 2012, Optics express.

[45]  Pang-yu Teng,et al.  Caserel - An Open Source Software for Computer-aided Segmentation of Retinal Layers in Optical Coherence Tomography Images , 2013 .

[46]  Jing Xu,et al.  Performance and scalability of Fourier domain optical coherence tomography acceleration using graphics processing units. , 2011, Applied optics.

[47]  Yifan Jian,et al.  Adaptive optics: optical coherence tomography system for in-vivo imaging of the mouse retina , 2012, Photonics West - Biomedical Optics.

[48]  Teresa C. Chen,et al.  Retinal nerve fiber layer thickness map determined from optical coherence tomography images. , 2005, Optics express.

[49]  Myeong Jin Ju,et al.  Sensorless adaptive optics multimodal en-face small animal retinal imaging. , 2018, Biomedical optics express.

[50]  Ghassan Hamarneh,et al.  Segmentation of Intra-Retinal Layers From Optical Coherence Tomography Images Using an Active Contour Approach , 2011, IEEE Transactions on Medical Imaging.

[51]  Daguang Xu,et al.  GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography. , 2014, Optics express.

[52]  Sujin Lee,et al.  Lens-based wavefront sensorless adaptive optics swept source OCT , 2016, Scientific Reports.

[53]  Zach DeVito,et al.  Opt , 2017 .

[54]  Qi Yang,et al.  Automated layer segmentation of macular OCT images using dual-scale gradient information. , 2010, Optics express.

[55]  Jerry L Prince,et al.  Retinal layer segmentation of macular OCT images using boundary classification , 2013, Biomedical optics express.

[56]  Joseph A. Izatt,et al.  Surgically integrated swept source optical coherence tomography (SSOCT) to guide vitreoretinal (VR) surgery , 2015 .

[57]  Jie Wang,et al.  Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography , 2018, Biomedical optics express.

[58]  Li Chen,et al.  JF-Cut: A Parallel Graph Cut Approach for Large-Scale Image and Video , 2015, IEEE Transactions on Image Processing.

[59]  Jing Tian,et al.  Performance evaluation of automated segmentation software on optical coherence tomography volume data , 2016, Journal of biophotonics.