Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia.

BACKGROUND X-linked hypophosphatemia (XLH) is the most common heritable form of rickets and osteomalacia. XLH-associated mutations in phosphate-regulating endopeptidase (PHEX) result in elevated serum FGF23, decreased renal phosphate reabsorption, and low serum concentrations of phosphate (inorganic phosphorus, Pi) and 1,25-dihydroxyvitamin D [1,25(OH)2D]. KRN23 is a human anti-FGF23 antibody developed as a potential treatment for XLH. Here, we have assessed the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and immunogenicity of KRN23 following a single i.v. or s.c. dose of KRN23 in adults with XLH. METHODS Thirty-eight XLH patients were randomized to receive a single dose of KRN23 (0.003-0.3 mg/kg i.v. or 0.1-1 mg/kg s.c.) or placebo. PK, PD, immunogenicity, safety, and tolerability were assessed for up to 50 days. RESULTS KRN23 significantly increased the maximum renal tubular threshold for phosphate reabsorption (TmP/GFR), serum Pi, and 1,25(OH)2D compared with that of placebo (P<0.01). The maximum serum Pi concentration occurred later following s.c. dosing (8-15 days) compared with that seen with i.v. dosing (0.5-4 days). The effect duration was dose related and persisted longer in patients who received s.c. administration. Changes from baseline in TmP/GFR, serum Pi, and serum 1,25(OH)2D correlated with serum KRN23 concentrations. The mean t1/2 of KRN23 was 8-12 days after i.v. administration and 13-19 days after s.c. administration. Patients did not exhibit increased nephrocalcinosis or develop hypercalciuria, hypercalcemia, anti-KRN23 antibodies, or elevated serum parathyroid hormone (PTH) or creatinine. CONCLUSION KRN23 increased TmP/GFR, serum Pi, and serum 1,25(OH)2D. The positive effect of KR23 on serum Pi and its favorable safety profile suggest utility for KRN23 in XLH patients. Trial registration. Clinicaltrials.gov NCT00830674. Funding. Kyowa Hakko Kirin Pharma, Inc.

[1]  I. Holm,et al.  A clinician's guide to X‐linked hypophosphatemia , 2011, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[2]  T. Shimada,et al.  Anti‐FGF‐23 neutralizing antibodies ameliorate muscle weakness and decreased spontaneous movement of Hyp mice , 2011, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[3]  T. Shimada,et al.  Therapeutic Effects of Anti‐FGF23 Antibodies in Hypophosphatemic Rickets/Osteomalacia , 2009, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[4]  M. Mohammadi,et al.  FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. , 2009, American journal of physiology. Renal physiology.

[5]  R. Kuroki,et al.  Anti‐FGF23 Neutralizing Antibodies Show the Physiological Role and Structural Features of FGF23 , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[6]  L. Quarles,et al.  How fibroblast growth factor 23 works. , 2007, Journal of the American Society of Nephrology : JASN.

[7]  M. Econs,et al.  Fibroblast growth factor 23: roles in health and disease. , 2005, Journal of the American Society of Nephrology : JASN.

[8]  C. Ohlsson,et al.  Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. , 2004, Endocrinology.

[9]  T. Yoneya,et al.  FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. , 2004, Biochemical and biophysical research communications.

[10]  Y. Takeuchi,et al.  Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. , 2002, The Journal of clinical endocrinology and metabolism.

[11]  C. Kleinman,et al.  Ectopic cardiac calcification associated with hyperparathyroidism in a boy with hypophosphatemic rickets. , 2001, Current opinion in pediatrics.

[12]  W. A. Murphy,et al.  X‐Linked Hypophosphatemia: A Clinical, Biochemical, and Histopathologic Assessment of Morbidity in Adults , 1989, Medicine.

[13]  M. Gibaldi,et al.  Noncompartmental Analysis Based on Statistical Moment Theory , 1982 .

[14]  F. Glorieux,et al.  X-linked hypophosphatemia: effect of calcitriol on renal handling of phosphate, serum phosphate, and bone mineralization. , 1981, The Journal of clinical endocrinology and metabolism.

[15]  O. Bijvoet,et al.  NOMOGRAM FOR DERIVATION OF RENAL THRESHOLD PHOSPHATE CONCENTRATION , 1975, The Lancet.

[16]  David S. Wishart,et al.  The Online Metabolic and Molecular Bases of Inherited Disease; Chapter 3.1: Metabolism and Metabolic Disease Resources on the Web, Page 1 , 2007 .

[17]  Cancer Therapy Evaluation Program Common Terminology Criteria for Adverse Events v3.0 (CTCAE) , 2003 .