Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction

We propose a scheme to engineer quantum superpositions of coherent states ('Schroedinger-cat states') of propagating optical pulses. Multidimensional and multipartite cat states can be generated simply by reflecting coherent optical pulses successively from a single-atom cavity. The influences of various sources of noise, including atomic spontaneous emission and pulse-shape distortion, are characterized through detailed numerical simulation, which demonstrates the practicality of this scheme within the reach of current experimental technology.

[1]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[2]  Song,et al.  Generation of superpositions of classically distinguishable quantum states from optical back-action evasion. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[3]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[4]  H. Ritsch,et al.  Single-atom quantum gate for light , 1997 .

[5]  C. Monroe,et al.  A “Schrödinger Cat” Superposition State of an Atom , 1996, Science.

[6]  Maximal violation of Bell inequalities using continuous-variable measurements , 2002, quant-ph/0211067.

[7]  S. J. van Enk Entanglement capabilities in infinite dimensions: multidimensional entangled coherent states. , 2003 .

[8]  H. J. Kimble,et al.  Cavity QED and quantum-information processing with "hot" trapped atoms , 2003 .

[9]  T. Ralph,et al.  Transmission of optical coherent-state qubits , 2003, quant-ph/0311093.

[10]  A. P. Lund,et al.  Conditional production of superpositions of coherent states with inefficient photon detection , 2004 .

[11]  Jinhyoung Lee,et al.  Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel , 2001, quant-ph/0104090.

[12]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[13]  G. D’Ariano,et al.  TOMOGRAPHIC MEASUREMENTS OF NONCLASSICAL RADIATION STATES , 1999, quant-ph/9901014.

[14]  A. D. Boozer,et al.  Supplementary Information for Experimental Realization of a One-Atom Laser in the Regime of Strong Coupling , 2003 .

[15]  G. Agarwal,et al.  Strong-driving-assisted multipartite entanglement in cavity QED. , 2002, Physical review letters.

[16]  Dreyer,et al.  Observing the Progressive Decoherence of the "Meter" in a Quantum Measurement. , 1996, Physical review letters.

[17]  H J Kimble,et al.  State-insensitive cooling and trapping of single atoms in an optical cavity. , 2003, Physical review letters.

[18]  O. Hirota,et al.  Entangled coherent states: Teleportation and decoherence , 2001 .

[19]  Herbert Walther,et al.  Quantum optics: The atomic nanoscope , 2001, Nature.

[20]  Knight,et al.  Superpositions of coherent states: Squeezing and dissipation. , 1992, Physical review. A, Atomic, molecular, and optical physics.