Stochastic order characterization of uniform integrability and tightness

We show that a family of random variables is uniformly integrable if and only if it is stochastically bounded in the increasing convex order by an integrable random variable. This result is complemented by proving analogous statements for the strong stochastic order and for power-integrable dominating random variables. In particular, we show that, whenever a family of random variables is stochastically bounded by a p-integrable random variable for some p>1, there is no distinction between the strong order and the increasing convex order. These results also yield new characterizations of relative compactness in Wasserstein and Prohorov metrics.

[1]  A. Müller,et al.  Comparison Methods for Stochastic Models and Risks , 2002 .

[2]  M. Yor,et al.  Looking for Martingales Associated to a Self-Decomposable Law , 2010 .

[3]  H. Thorisson Coupling, stationarity, and regeneration , 2000 .

[4]  Lester E. Dubins,et al.  On the distribution of maxima of martingales , 1978 .

[5]  R. P. Kertz,et al.  Complete lattices of probability measures with applications to martingale theory , 2000 .

[6]  H. Kellerer,et al.  Markov-Komposition und eine Anwendung auf Martingale , 1972 .

[7]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[8]  L. Leskelä Stochastic Relations of Random Variables and Processes , 2008 .

[9]  J. Shanthikumar,et al.  Multivariate Stochastic Orders , 2007 .

[10]  Dimitri P. Bertsekas,et al.  Convex Analysis and Optimization , 2003 .

[11]  J. Littlewood,et al.  A maximal theorem with function-theoretic applications , 1930 .

[12]  S. Rachev,et al.  Mass transportation problems , 1998 .

[13]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[14]  Tomasz Rolski,et al.  A MONOTONICITY RESULT FOR THE WORKLOAD IN MARKOV-MODULATED QUEUES , 1998 .

[15]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[16]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[17]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[18]  ALFRED MÜLLER,et al.  Stochastic Order Relations and Lattices of Probability Measures , 2006, SIAM J. Optim..