Chaotic orientational behavior of a nematic liquid crystal subjected to a steady shear flow.

Based on a relaxation equation for the second rank alignment tensor characterizing the molecular orientation in liquid crystals, we report on a number of symmetry-breaking transient states and simple periodic and irregular, chaotic out-of-plane orbits under steady flow. Both an intermittency route and a period-doubling route to chaos are found for this five-dimensional dynamic system in a certain range of parameters (shear rate, tumbling parameter at isotropic-nematic coexistence, and reduced temperature). A link to the corresponding rheochaotic states, present in complex fluids, is made.

[1]  S. Hess,et al.  On the Unified Theory for Non-Equilibrium Phenomena in the Isotropic and Nematic Phases of a Liquid Crystal; Spatially Inhomogeneous Alignment , 1981 .

[2]  J. Ericksen Conservation Laws for Liquid Crystals , 1961 .

[3]  A. K. Sood,et al.  Chaotic dynamics in shear-thickening surfactant solutions , 2001 .

[4]  Francesco Greco,et al.  The Elastic Constants of Maier-Saupe Rodlike Molecule Nematics , 1991 .

[5]  O. Gottlieb,et al.  Chaotic rotation of triaxial ellipsoids in simple shear flow , 1997, Journal of Fluid Mechanics.

[6]  D Roux,et al.  Oscillating viscosity in a lyotropic lamellar phase under shear flow. , 2001, Physical review letters.

[7]  Geetha Basappa,et al.  Observation of chaotic dynamics in dilute sheared aqueous solutions of CTAT. , 2000, Physical review letters.

[8]  Masao Doi,et al.  Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases , 1981 .

[9]  O. Hess,et al.  Nonlinear fluid behavior: from shear thinning to shear thickening , 1994 .

[10]  S. Hess,et al.  Orientational dynamics of nematic liquid crystals under shear flow , 1999 .

[11]  Siegfried Hess,et al.  Fokker-Planck-Equation Approach to Flow Alignment in Liquid Crystals , 1976 .

[12]  Martin Kröger,et al.  Rheology and structural changes of polymer melts via nonequilibrium molecular dynamics , 1993 .

[13]  B. Edwards,et al.  Out‐of‐plane orientational dynamics of polymer liquid crystals under flow , 1996 .

[14]  P. Goldbart,et al.  Isotropic-nematic transition in shear flow: State selection, coexistence, phase transitions, and critical behavior. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[15]  S. Hess,et al.  Unified Description of the Flow Alignment and Viscosity in the Isotropic and Nematic Phases of Liquid Crystals , 1995 .

[16]  James J. Feng,et al.  The shear flow behavior of LCPs based on a generalized Doi model with distortional elasticity , 2002 .

[17]  R. Keunings,et al.  Prediction of chaotic dynamics in sheared liquid crystalline polymers. , 2001, Physical review letters.

[18]  J. Vermant,et al.  Experimental evidence for the existence of a wagging regime in polymeric liquid crystals , 1997 .

[19]  Ronald G. Larson,et al.  Effect of molecular elasticity on out-of-plane orientations in shearing flows of liquid-crystalline polymers , 1991 .

[20]  R. Larson Arrested Tumbling in Shearing Flows of Liquid Crystal Polymers , 1990 .

[21]  P. Maffettone,et al.  Nematic phase of rodlike polymers. I. Prediction of transient behavior at high shear rates , 1990 .

[22]  W. Muschik,et al.  Mesoscopic interpretation of Fokker-Planck equation describing time behavior of liquid crystal orientation , 1997 .

[23]  P. Goldbart,et al.  Theory of the nonequilibrium phase transition for nematic liquid crystals under shear flow. , 1990, Physical review. A, Atomic, molecular, and optical physics.