INKJET PRINTING OF THREE-DIMENSIONAL VASCULAR-LIKE CONSTRUCTS FROM CELL SUSPENSIONS

ii DEDICATION v ACKNOWLEDGEMENTS vi LIST OF TABLES x LIST OF FIGURES xi CHAPTER ONE INTRODUCTION 1 1.1 Motivation and Background 1 1.2 Current State of Research 8 1.3 Scope of Dissertation 21 1.4 Dissertation Organization 22 CHAPTER TWO PINCH-OFF LOCATIONS DURING DROP-ON-DEMAND INKJETTING OF ALGINATE SOLUTION 26 2.

[1]  W. Hwang,et al.  Effects of pulse voltage on inkjet printing of a silver nanopowder suspension , 2008, Nanotechnology.

[2]  Wallace W. Carr,et al.  An experimental study of drop-on-demand drop formation , 2006 .

[3]  P. Vos,et al.  Cell encapsulation: Promise and progress , 2003, Nature Medicine.

[4]  ナノパーティクルテクノロジーハンドブック編集委員会,et al.  ナノパーティクルテクノロジーハンドブック = Nanoparticle technology handbook , 2006 .

[5]  Makoto Nakamura,et al.  Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. , 2009, Journal of biomechanical engineering.

[6]  J. Cooper-White,et al.  Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration , 2006 .

[7]  Weiqi Wang,et al.  Parametric Study of Acoustic Excitation-Based Glycerol-Water Microsphere Fabrication in Single Nozzle Jetting , 2010 .

[8]  Juan Fern The Fluid Dynamics of Taylor Cones , 2007 .

[9]  Brian Derby,et al.  Bioprinting: Inkjet printing proteins and hybrid cell-containing materials and structures , 2008 .

[10]  Stephen D. Hoath,et al.  A simple criterion for filament break-up in drop-on-demand inkjet printing , 2013 .

[11]  Nan Ma,et al.  Laser printing of skin cells and human stem cells. , 2010, Tissue engineering. Part C, Methods.

[12]  Wujie Zhang,et al.  Encapsulation of living cells in small ( approximately 100 microm) alginate microcapsules by electrostatic spraying: a parametric study. , 2009, Journal of biomechanical engineering.

[13]  Vladimir Mironov,et al.  Organ printing: tissue spheroids as building blocks. , 2009, Biomaterials.

[14]  Wallace W. Carr,et al.  Drop-on-demand drop formation of colloidal suspensions , 2012 .

[15]  D W Pack,et al.  Fabrication of PLG microspheres with precisely controlled and monodisperse size distributions. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[16]  B. Tay,et al.  Investigation of some phenomena occurring during continuous ink-jet printing of ceramics , 2001 .

[17]  Malcolm R. Mackley,et al.  Filament stretching rheometry and break-up behaviour of low viscosity polymer solutions and inkjet fluids , 2008 .

[18]  Vladimir Mironov,et al.  Organ printing: computer-aided jet-based 3D tissue engineering. , 2003, Trends in biotechnology.

[19]  M. Renardy A numerical study of the asymptotic evolution and breakup of Newtonian and viscoelastic jets , 1995 .

[20]  Binyamin Rubin,et al.  Wire-in-a-nozzle as a new droplet-on-demand electrogenerator. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[21]  J. R. Melcher,et al.  Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses , 1969 .

[22]  J. R. Castrejón-Pita,et al.  A novel method to produce small droplets from large nozzles. , 2012, The Review of scientific instruments.

[23]  Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers , 2005, cond-mat/0502212.

[24]  T. Boland,et al.  Inkjet printing of viable mammalian cells. , 2005, Biomaterials.

[25]  Doyoung Byun,et al.  Mechanism of electrohydrodynamic printing based on ac voltage without a nozzle electrode , 2009 .

[26]  G. McKinley,et al.  Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets , 2010, Journal of Fluid Mechanics.

[27]  R. Markwald,et al.  Scaffold‐free inkjet printing of three‐dimensional zigzag cellular tubes , 2012, Biotechnology and bioengineering.

[28]  Douglas B. Chrisey,et al.  Effect of laser fluence on yeast cell viability in laser-assisted cell transfer , 2009 .

[29]  Douglas B. Chrisey,et al.  Matrix-assisted pulsed laser methods for biofabrication , 2011 .

[30]  E. Hinch,et al.  Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid , 1997 .

[31]  H. Fischer,et al.  Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid , 2012, Biofabrication.

[32]  Alvin U. Chen,et al.  Computational and experimental analysis of pinch-off and scaling. , 2002, Physical review letters.

[33]  I. Hutchings,et al.  Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Joseph Cesarano,et al.  Colloidal inks for directed assembly of 3-D periodic structures , 2002 .

[35]  Oliver G. Harlen,et al.  Modelling the jetting of dilute polymer solutions in drop-on-demand inkjet printing , 2013 .

[36]  G. McKinley,et al.  ‘Gobbling drops’: the jetting–dripping transition in flows of polymer solutions , 2009, Journal of Fluid Mechanics.

[37]  John Ralston,et al.  Electrowetting of ionic liquids. , 2006, Journal of the American Chemical Society.

[38]  J. A. Lewis Direct Ink Writing of 3D Functional Materials , 2006 .

[39]  I. Zein,et al.  Fused deposition modeling of novel scaffold architectures for tissue engineering applications. , 2002, Biomaterials.

[40]  Glenn D Prestwich,et al.  Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates. , 2010, Biomaterials.

[41]  C. Verdier,et al.  Fractal approach to the rheology of concentrated cell suspensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Oliver G. Harlen,et al.  Viscoelasticity in inkjet printing , 2010 .

[43]  S. Mitra,et al.  Contact angle hysteresis of microbead suspensions. , 2010, Langmuir.

[44]  G. McKinley,et al.  How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer , 2000 .

[45]  Yong Huang,et al.  Alginate Microsphere Fabrication Using Bipolar Wave-Based Drop-on-Demand Jetting. , 2012, Journal of manufacturing processes.

[46]  Mason,et al.  Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. , 1995, Physical review letters.

[47]  Brian Derby,et al.  Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors , 2005 .

[48]  Yee Cheong Lam,et al.  Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation , 2009 .

[49]  Wenxuan Chai,et al.  Performance evaluation of bipolar and tripolar excitations during nozzle-jetting-based alginate microsphere fabrication , 2012 .

[50]  Howard H. Hu,et al.  Shape dynamics and rheology of soft elastic particles in a shear flow. , 2012, Physical review letters.

[51]  Jeffrey F. Morris,et al.  An experimental study of particle effects on drop formation , 2004 .

[52]  Wei Sun,et al.  Multi‐nozzle deposition for construction of 3D biopolymer tissue scaffolds , 2005 .

[53]  K. Shah,et al.  Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas , 2011, Nature Neuroscience.

[54]  D. Bogy Drop Formation in a Circular Liquid Jet , 1979 .

[55]  Lichun Dong,et al.  Surface Tension of Charge-Stabilized Colloidal Suspensions at the Water−Air Interface , 2003 .

[56]  F. Durst,et al.  Linear analysis of the temporal instability of axisymmetrical non-Newtonian liquid jets , 2000 .

[57]  R. Collins,et al.  Electrohydrodynamic tip streaming and emission of charged drops from liquid cones , 2008 .

[58]  Jeffrey F. Morris,et al.  Pendant drop thread dynamics of particle-laden liquids , 2007 .

[59]  D. Bonn,et al.  Droplet detachment and satellite bead formation in viscoelastic fluids. , 2005, Physical review letters.

[60]  Jungho Hwang,et al.  On-demand electrohydrodynamic jetting with meniscus control by a piezoelectric actuator for ultra-fine patterns , 2009 .

[61]  J. L. Li,et al.  On the meniscus deformation when the pulsed voltage is applied , 2006 .

[62]  L. Niklason,et al.  Scaffold-free vascular tissue engineering using bioprinting. , 2009, Biomaterials.

[63]  H. Lee,et al.  A Manual for Biomaterials/Scaffold Fabrication Technology , 2007 .

[64]  T. Tadros Surface and colloid chemistry in advanced ceramics processing , 1995 .

[65]  Zhibing Zhang,et al.  High-speed compression of single alginate microspheres , 2005 .

[66]  Kazimierz Adamiak,et al.  Comparison of conduction and induction charging in liquid spraying , 2005 .

[67]  Kye-Si Kwon,et al.  Waveform Design Methods for Piezo Inkjet Dispensers Based on Measured Meniscus Motion , 2009, Journal of Microelectromechanical Systems.

[68]  R. Pal Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes. , 2003, Journal of biomechanics.

[69]  Yong Huang,et al.  Laser-based direct-write techniques for cell printing , 2010, Biofabrication.

[70]  H. Wijshoff,et al.  The dynamics of the piezo inkjet printhead operation , 2010 .

[71]  B. Amsden,et al.  Diffusion characteristics of calcium alginate gels. , 1999, Biotechnology and bioengineering.

[72]  L. Walker,et al.  Effect of fluid relaxation time of dilute polymer solutions on jet breakup due to a forced disturbance , 2002 .

[73]  A. Salsac,et al.  Measurement of the mechanical properties of alginate beads using ultrasounds , 2009 .

[74]  Hossein Fakhrzadeh,et al.  Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing. , 2012, Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al.

[75]  Yong Huang,et al.  Cell and organ printing turns 15: Diverse research to commercial transitions , 2013 .

[76]  Jooho Moon,et al.  Influence of fluid physical properties on ink-jet printability. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[77]  D. Papageorgiou ON THE BREAKUP OF VISCOUS LIQUID THREADS , 1995 .

[78]  Stephen D. Hoath,et al.  Evaluation of the inkjet fluid’s performance using the “Cambridge Trimaster” filament stretch and break-up device , 2010 .

[79]  Gareth H. McKinley,et al.  Formation of beads-on-a-string structures during break-up of viscoelastic filaments , 2010 .

[80]  Makoto Nakamura,et al.  Development of an effective three dimensional fabrication technique using inkjet technology for tissue model samples , 2006 .

[81]  A. Khademhosseini,et al.  Modular Tissue Engineering: Engineering Biological Tissues from the Bottom Up. , 2009, Soft matter.

[82]  Mattie S. M. Timmer,et al.  Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device , 2011, Biofabrication.

[83]  G. Ahmetli,et al.  Measuring the Young’s modulus of polystyrene-based composites by tensile test and pulse-echo method , 2011 .

[84]  Yong Woo Cho,et al.  Piezoelectric inkjet printing of polymers: Stem cell patterning on polymer substrates , 2010 .

[85]  P. M. Ferreira,et al.  High-speed and drop-on-demand printing with a pulsed electrohydrodynamic jet , 2010 .

[86]  C. Pozrikidis Capillary instability and breakup of a viscous thread , 1999 .

[87]  J. Lewis,et al.  3D Bioprinting of Vascularized, Heterogeneous Cell‐Laden Tissue Constructs , 2014, Advanced materials.

[88]  I. Hutchings,et al.  Inkjet printing - the physics of manipulating liquid jets and drops , 2008 .

[89]  John A Rogers,et al.  High-resolution electrohydrodynamic jet printing. , 2007, Nature materials.

[90]  E. W. Llewellin,et al.  The rheology of suspensions of solid particles , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[91]  N. Wagner,et al.  Colloidal Suspension Rheology: Frontmatter , 2011 .

[92]  Gareth H. McKinley,et al.  Elasto-capillary thinning and breakup of model elastic liquids , 2001 .

[93]  Wei Sun,et al.  Bioprinting endothelial cells with alginate for 3D tissue constructs. , 2009, Journal of biomechanical engineering.

[94]  T. Fischer On the energy dissipation in a tank-treading human red blood cell. , 1980, Biophysical journal.

[95]  Birte Twisselmann,et al.  The Oxford Companion to the Body , 2002, BMJ : British Medical Journal.

[96]  Jingyuan Yan Laser-assisted printing of alginate and cellular tubes , 2013 .

[97]  Yong Huang,et al.  Metallic foil-assisted laser cell printing. , 2011, Journal of biomechanical engineering.

[98]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[99]  T. Okubo Surface Tension of Structured Colloidal Suspensions of Polystyrene and Silica Spheres at the Air-Water Interface , 1995 .

[100]  Anthony Atala,et al.  Evaluation of hydrogels for bio-printing applications. , 2013, Journal of biomedical materials research. Part A.

[101]  Osman A. Basaran,et al.  Computational analysis of drop-on-demand drop formation , 2007 .

[102]  Detlef Lohse,et al.  Breakup of diminutive Rayleigh jets , 2010, 1011.0320.

[103]  I. Hayati,et al.  Mechanism of stable jet formation in electrohydrodynamic atomization , 1986, Nature.

[104]  Diane M. Henderson,et al.  On the pinch-off of a pendant drop of viscous fluid , 1997 .

[105]  I. Morita,et al.  Biocompatible inkjet printing technique for designed seeding of individual living cells. , 2005, Tissue engineering.

[106]  R. Badie,et al.  Mechanism of drop constriction in a drop-on-demand inkjet system , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[107]  Doyoung Byun,et al.  Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head , 2008 .

[108]  Hae-Chang Jeong,et al.  Photoreactive Spacer Prepared Using Electrohydrodynamic Printing for Application in a Liquid Crystal Device , 2013 .

[109]  J. Eggers,et al.  Universal pinching of 3D axisymmetric free-surface flow. , 1993, Physical review letters.

[110]  Jungho Hwang,et al.  Formation of Ceramic Nanoparticle Patterns Using Electrohydrodynamic Jet Printing with Pin-to-Pin Electrodes , 2008 .

[111]  G. Watson,et al.  Imaging and force-distance analysis of human fibroblasts in vitro by atomic force microscopy. , 1999, Cytometry.

[112]  Vladimir Mironov,et al.  Organ printing: promises and challenges. , 2008, Regenerative medicine.

[113]  S. A.V,et al.  Measurement of mechanical properties of alginate beads using ultrasound , 2009 .

[114]  Ilhan A. Aksay,et al.  Scaling laws for pulsed electrohydrodynamic drop formation , 2006 .

[115]  Thomas Braschler,et al.  Microdrop Printing of Hydrogel Bioinks into 3D Tissue‐Like Geometries , 2012, Advanced materials.

[116]  Brian Derby,et al.  Inkjet Printing of Highly Loaded Particulate Suspensions , 2003 .

[117]  Hoon Cheol Park,et al.  A Hybrid Inkjet Printer Utilizing Electrohydrodynamic Jetting and Piezoelectric Actuation , 2010 .

[118]  Sarit B. Bhaduri,et al.  Drop-on-demand printing of cells and materials for designer tissue constructs , 2007 .

[119]  Victoria O Adesanya,et al.  The rheological characterization of algae suspensions for the production of biofuels , 2012 .

[120]  Changxue Xu,et al.  Effects of fluid properties and laser fluence on jet formation during laser direct writing of glycerol solution , 2012 .

[121]  S. Hofmann,et al.  Controlled Positioning of Cells in Biomaterials—Approaches Towards 3D Tissue Printing , 2011, Journal of functional biomaterials.

[122]  Notz,et al.  Dynamics of Drop Formation in an Electric Field. , 1999, Journal of colloid and interface science.

[123]  Yong Huang,et al.  Predictive compensation-enabled horizontal inkjet printing of alginate tubular constructs , 2013 .

[124]  Tao Xu,et al.  Viability and electrophysiology of neural cell structures generated by the inkjet printing method. , 2006, Biomaterials.

[125]  Haim Kalman,et al.  Handbook of conveying and handling of particulate solids , 2001 .

[126]  Hyeongwoo Kim,et al.  A time-series analysis of the U.S. kidney transplantation and the waiting list: donor substitution effects , 2012 .

[127]  A. Ugural,et al.  Advanced strength and applied elasticity , 1981 .

[128]  Jianzhong Fu,et al.  TIME-RESOLVED STUDY OF DROPLET FORMATION PROCESS DURING INKJETTING OF ALGINATE SOLUTION , 2013 .

[129]  R. Rutgers,et al.  Relative viscosity of suspensions of rigid spheres in Newtonian liquids , 1962 .

[130]  Yong-Jun Kim,et al.  A hybrid electrohydrodynamic drop-on-demand printing system using a piezoelectric MEMS nozzle , 2012 .

[131]  W. W. Carr,et al.  Drop-on-demand drop formation of polyethylene oxide solutions , 2011 .

[132]  D. Saville ELECTROHYDRODYNAMICS:The Taylor-Melcher Leaky Dielectric Model , 1997 .

[133]  A. Lee,et al.  Droplet microfluidics. , 2008, Lab on a chip.

[134]  James A. Sethian,et al.  Two-phase viscoelastic jetting , 2009, J. Comput. Phys..

[135]  Jingyuan Yan,et al.  Laser-assisted printing of alginate long tubes and annular constructs , 2012, Biofabrication.

[136]  John Evans,et al.  Formulation and multilayer jet printing of ceramic inks , 2004 .

[137]  David J Mooney,et al.  Alginate hydrogels as biomaterials. , 2006, Macromolecular bioscience.

[138]  P. Pullarkat,et al.  The role of the cytoskeleton in volume regulation and beading transitions in PC12 neurites. , 2010, Biophysical journal.

[139]  T. Kowalewski,et al.  On the separation of droplets from a liquid jet , 1996 .

[140]  J.V.L. da Silva,et al.  Scalable robotic biofabrication of tissue spheroids , 2011, Biofabrication.

[141]  A. Khademhosseini,et al.  Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. , 2010, Tissue engineering. Part C, Methods.

[142]  Alvin U. Chen,et al.  A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production , 2002 .