Ab initio theoretical predictions of C28, C28H4, C28F4, (Ti@C28)H4, and M@C28 (M=Mg, Al, Si, S, Ca, Sc, Ti, Ge, Zr, and Sn)

Recent experiments have demonstrated that C28 is the smallest fullerene cage that successfully traps elements in its inside. In this work, we have studied the electronic structures, equilibrium geometries, and binding energies of the title molecules at the self‐consistent field (SCF) Hartree–Fock level of theory employing basis sets of double‐zeta quality. The empty C28 fullerene is found to have a 5A2 open‐shell ground state and behaves as a sort of hollow superatom with an effective valence of 4, both toward the outside and inside of the carbon cage. The theoretical evidence suggests that C28H4 and C28F4 should be stable molecules. The possibility of simultaneous bonding from the inside and outside of the C28 shell, as in (Ti@C28)H4, is also explored. Our calculations show that the binding energy of the M@C28 species is a good indicator of the success in experimentally trapping the metal atoms (M) inside the fullerene cage. Based on these results, we propose that elements with electronegativities smalle...

[1]  N. Rösch,et al.  Arè endohedral metal(IV)C28 compounds hypervalent , 1992 .

[2]  G. Scuseria Comparison of coupled‐cluster results with a hybrid of Hartree–Fock and density functional theory , 1992 .

[3]  B. Dunlap,et al.  Asymmetric localization of titanium in carbon molecule (C28) , 1992 .

[4]  Che Ting Chan,et al.  The geometry of small fullerene cages: C20 to C70 , 1992 .

[5]  R. Smalley,et al.  Uranium Stabilization of C28: A Tetravalent Fullerene , 1992, Science.

[6]  Michael J. Frisch,et al.  The performance of the Becke-Lee-Yang-Parr (B-LYP) density functional theory with various basis sets , 1992 .

[7]  R. Kaner,et al.  Endohedral rare-earth fullerene complexes , 1992 .

[8]  H. Nelson,et al.  Production and characterization of metallofullerenes , 1992 .

[9]  D. Bethune,et al.  Scandium Clusters in Fullerene Cages , 1992, Science.

[10]  Y. Saito,et al.  Encapsulation of a scandium trimer in C82 , 1992, Nature.

[11]  Benny G. Johnson,et al.  An investigation of the performance of a hybrid of Hartree‐Fock and density functional theory , 1992 .

[12]  R. Smalley,et al.  XPS probes of carbon-caged metals , 1992 .

[13]  G. U. Kulkarni,et al.  A novel iron fullerene (FeC60) adduct in the solid state , 1992 .

[14]  R. Smalley,et al.  Self-assembly of the fullerenes , 1992 .

[15]  J. Simons,et al.  Relative stabilities of fullerene, cumulene, and polyacetylene structures for Cn : n=18–60 , 1992 .

[16]  Helmut Schwarz,et al.  The Neutralization of HeC in the Gas Phase: Compelling Evidence for the Existence of an Endohedral Structure for He@C60 , 1992 .

[17]  D. Bethune,et al.  Electron paramagnetic resonance studies of lanthanum-containing C82 , 1992, Nature.

[18]  R. Kaner,et al.  Lanthanum carbide (La2C80): a soluble dimetallofullerene , 1991 .

[19]  C. T. White,et al.  Endohedral vibrations of sodium(1+) in fullerene (C60) , 1991 .

[20]  P. Fowler,et al.  Structural proposals for endohedral metal—fullerene complexes , 1991 .

[21]  R. Haddon,et al.  Dichroism in solutions of fullerene C70 in nematic hosts , 1991 .

[22]  B. Wästberg,et al.  Electronic structure of C60 and the alkali atom containing compounds MC60, M = Li, Na, K, Rb, Cs and K2C60 , 1991 .

[23]  Walter Thiel,et al.  MNDO Study of Large Carbon Clusters , 1991 .

[24]  J. Cioslowski Endohedral chemistry: electronic structures of molecules trapped inside the C60 cage , 1991 .

[25]  W. C. Ermler,et al.  The ground and excited states of C60M and C60M+ (M=O, F, K, Ca, Mn, Cs, Ba, La, Eu, U) , 1991 .

[26]  Eugene D. Fleischmann,et al.  Endohedral complexes: Atoms and ions inside the C60 cage , 1991 .

[27]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[28]  A. Chang,et al.  Electronic structure and spectra of uranocene , 1989 .

[29]  Marco Häser,et al.  Improvements on the direct SCF method , 1989 .

[30]  A. Rosén,et al.  First-principle calculations of the ionization potentials and electron affinities of the spheroidal molecules carbon (C60) and lanthanum carbude (LaC60) , 1988 .

[31]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[32]  S. C. O'brien,et al.  Photophysics of metal complexes of spheroidal carbon shells , 1988 .

[33]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[34]  H. W. Kroto,et al.  The stability of the fullerenes Cn, with n = 24, 28, 32, 36, 50, 60 and 70 , 1987, Nature.

[35]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[36]  S. C. O'brien,et al.  Lanthanum complexes of spheroidal carbon shells , 1985 .

[37]  Donald M. Cox,et al.  Production and characterization of supersonic carbon cluster beams , 1984 .

[38]  J. Almlöf,et al.  Principles for a direct SCF approach to LICAO–MOab‐initio calculations , 1982 .

[39]  Diane M. Hood,et al.  Electronic structure of homoleptic transition metal hydrides: TiH4, VH4, CrH4, MnH4, FeH4, CoH4, and NiH4 , 1979 .

[40]  Thom H. Dunning,et al.  Gaussian basis sets for the atoms gallium through krypton , 1977 .

[41]  H. Schaefer,et al.  Triplet electronic ground state of trimethylenemethane , 1974 .

[42]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[43]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[44]  G. Herzberg,et al.  Molecular spectra and molecular structure. Vol.3: Electronic spectra and electronic structure of polyatomic molecules , 1966 .

[45]  C. K. Ingold The Nature of the Chemical Bond and the Structure of Molecules and Crystals , 1940, Nature.