A quadrilateral shell element using a mixed formulation

A simple quadrilateral shell element consisting of five nodes, four corner nodes and a central node, is developed for linear elastic analysis of thin as well as moderately thick shells. Based on a modified Hellinger-Reissner principle, finite element equations are derived from the assumed displacement and strain fields. By carefully choosing appropriate strain terms, all kinematic deformation modes are suppressed. Although the present element is similar to a displacement-based degenerated shell, no locking is experienced when it is applied to thin shell problems. Five examples are given to illustrate the analysis capability of the shell element. Numerical results indicate that the element shows fast mesh convergence and gives excellent stress predictions.

[1]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[2]  Theodore H. H. Pian,et al.  Hybrid SemiLoof elements for plates and shells based upon a modified Hu-Washizu principle , 1984 .

[3]  S. W. Lee,et al.  Mixed formulation finite elements for mindlin theory plate bending , 1982 .

[4]  T. Pian,et al.  On the suppression of zero energy deformation modes , 1983 .

[5]  C. C. Dai,et al.  A triangular finite element for thin plates and shells , 1985 .

[6]  Martin Cohen,et al.  The “heterosis” finite element for plate bending , 1978 .

[7]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[8]  Ted Belytschko,et al.  A consistent control of spurious singular modes in the 9-node Lagrange element for the laplace and mindlin plate equations , 1984 .

[9]  Richard H. Macneal,et al.  Derivation of element stiffness matrices by assumed strain distributions , 1982 .

[10]  Ted Belytschko,et al.  Limitation principles for mixed finite elements based on the Hu-Washizu variational formulation , 1985 .

[11]  T. Belytschko,et al.  A C0 triangular plate element with one‐point quadrature , 1984 .

[12]  H. Parisch,et al.  A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .

[13]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  R. A. Uras,et al.  Finite element stabilization matrices-a unification approach , 1985 .

[16]  T. Hughes,et al.  Finite Elements Based Upon Mindlin Plate Theory With Particular Reference to the Four-Node Bilinear Isoparametric Element , 1981 .

[17]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[18]  Richard H. Macneal,et al.  A simple quadrilateral shell element , 1978 .

[19]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[20]  Thomas J. R. Hughes,et al.  An improved treatment of transverse shear in the mindlin-type four-node quadrilateral element , 1983 .

[21]  Atef F. Saleeb,et al.  An efficient quadrilateral element for plate bending analysis , 1987 .

[22]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[23]  P. G. Bergan,et al.  Quadrilateral plate bending elements with shear deformations , 1984 .

[24]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[25]  K. Park,et al.  A Curved C0 Shell Element Based on Assumed Natural-Coordinate Strains , 1986 .

[26]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[27]  John Argyris,et al.  A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems , 1977 .

[28]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[29]  Atef F. Saleeb,et al.  On the hybrid-mixed formulation of C 0 curved beam elements , 1987 .

[30]  Theodore H. H. Pian,et al.  Alternative ways for formulation of hybrid stress elements , 1982 .

[31]  Robert L. Spilker,et al.  Invariant 8‐node hybrid‐stress elements for thin and moderately thick plates , 1982 .

[32]  M. Crisfield A four-noded thin-plate bending element using shear constraints—a modified version of lyons' element , 1983 .

[33]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[34]  S. N. Atluri,et al.  Existence and stability, and discrete BB and rank conditions, for general mixed-hybrid finite elements in elasticity , 1985 .

[35]  John Robinson,et al.  LORA—an accurate four node stress plate bending element , 1979 .

[36]  G. Dhatt,et al.  A new triangular discrete Kirchhoff plate/shell element , 1986 .