Model Generation for Natural Language Interpretation and Analysis

Model generation refers to the automatic generation of mathematical structures that prove the satisfiability of logical theories. The research documented in this thesis investigates the use of model generation in the analysis and interpretation of formal semantic representations of natural language. Based on standard techniques for first-order model generation, we develop a model generation technique for a restricted higher-order logic and show how this method can be used to investigate the criteria that distinguish valid natural-language interpretations from interpretations that do not correspond to the intended meaning of the represented sentences. In particular, we investigate the analysis of singular definite descriptions and reciprocal sentences and show that model generation gives a computational method for describing theories of prefernece for natural-language interpretations. nicht vorhanden

[1]  Larry Wos,et al.  Set theory in first-order logic: Clauses for Gödel's axioms , 1986, Journal of Automated Reasoning.

[2]  Richard Montague,et al.  The Proper Treatment of Quantification in Ordinary English , 1973 .

[3]  M. Brady,et al.  So What Can We Talk About Now , 1983 .

[4]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[5]  Karsten Konrad,et al.  Presenting Herbrand Models with Linguistically Motivated Techniques , 1999 .

[6]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[7]  Nicholas Asher,et al.  A Computational Account of Syntactic, Semantic and Discourse Principles for Anaphora Resolution , 1988, J. Semant..

[8]  Michael D. Ernst,et al.  Automatic SAT-Compilation of Planning Problems , 1997, IJCAI.

[9]  Harvey M. Salkin,et al.  Foundations of integer programming , 1989 .

[10]  Uwe Reyle,et al.  From discourse to logic , 1993 .

[11]  Michael Kohlhase,et al.  Higher-order colored unification : A linguistic application , 1999 .

[12]  Bernhard Beckert,et al.  The Even More Liberalized delta-Rule in Free Variable Semantic Tableaux , 1993, Kurt Gödel Colloquium.

[13]  Johan Bos,et al.  Automated Theorem Proving for Natural Language Understanding , 1998 .

[14]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[15]  Nicholas John Haddock Incremental semantics and interactive syntactic processing , 1988 .

[16]  William M. Farmer,et al.  A partial functions version of Church's simple theory of types , 1990, Journal of Symbolic Logic.

[17]  Martin Giese,et al.  Hilbert's epsilon-Terms in Automated Theorem Proving , 1999, TABLEAUX.

[18]  Heribert Schütz Generating Minimal Herbrand Models Step by Step , 1999, TABLEAUX.

[19]  Miyuki Koshimura,et al.  MGTP: A Model Generation Theorem Prover - Its Advanced Features and Applications , 1997, TABLEAUX.

[20]  Norbert Eisinger,et al.  Satchmo: Minimal Model Generation and Compilation (System Description) , 1996 .

[21]  Peter A. Flach,et al.  Abduction and Induction , 2000 .

[22]  Jaakko Hintikka Model minimization —An alternative to circumscription , 2004, Journal of Automated Reasoning.

[23]  Peter Baumgartner,et al.  Hyper Tableaux The Next Generation , 1997 .

[24]  Robert Givan,et al.  Natural Language Syntax and First-Order Inference , 1992, Artificial Intelligence.

[25]  Giorgio Gallo,et al.  Algorithms for Testing the Satisfiability of Propositional Formulae , 1989, J. Log. Program..

[26]  Daniel Jackson,et al.  Elements of style: analyzing a software design feature with a counterexample detector , 1996, ISSTA '96.

[27]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[28]  Jinchang Wang,et al.  Solving propositional satisfiability problems , 1990, Annals of Mathematics and Artificial Intelligence.

[29]  François Bry,et al.  Minimal Model Generation with Positive Unit Hyper-Resolution Tableaux , 1996, TABLEAUX.

[30]  Peter Fröhlich,et al.  Minimal model semantics for diagnosis -- techniques and first benchmarks , 1996 .

[31]  Ilkka Niemelä,et al.  A Tableau Calculus for Minimal Model Reasoning , 1996, TABLEAUX.

[32]  J. Hintikka On denoting what? , 2005, Synthese.

[33]  Yoad Winter,et al.  What Does the Strongest Meaning Hypothesis Mean , 1996 .

[34]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[35]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[36]  W. McCune A Davis-Putnam program and its application to finite-order model search: Quasigroup existence problems , 1994 .

[37]  Hélène Fargier,et al.  Propositional Satisfaction Problems and Clausal CSPs , 1998, European Conference on Artificial Intelligence.

[38]  Stefan Klingenbeck Counter examples in semantic tableaux , 1997, DISKI.

[39]  Christoph Benzmüller,et al.  Extensional Higher-Order Resolution , 1998, CADE.

[40]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[41]  William McCune Automatic Proofs and Counterexamples for Some Ortholattice Identities , 1998, Inf. Process. Lett..

[42]  Peter F. Patel-Schneider,et al.  A decidable first-order logic for knowledge representation , 1985, Journal of Automated Reasoning.

[43]  François Bry,et al.  SATCHMO: A Theorem Prover Implemented in Prolog , 1988, CADE.

[44]  M. Stickel,et al.  Automated reasoning and exhaustive search: Quasigroup existence problems☆ , 1995 .

[45]  Matthew L. Ginsberg A Circumscriptive Theorem Prover , 1989, Artif. Intell..

[46]  Bernhard Beckert,et al.  leanTAP: Lean tableau-based deduction , 1995, Journal of Automated Reasoning.

[47]  P. Strawson III.—ON REFERRING , 1950 .

[48]  Norbert Eisinger,et al.  SIC: Satisfiability Checking for Integrity Constraints , 1998, DDLP.

[49]  Hansong Zhang,et al.  Implementing the Davis-Putnam Algorithm by Tries , 1994 .

[50]  David W. Reed,et al.  SATCHMORE: SATCHMO with RElevancy , 1995, Journal of Automated Reasoning.

[51]  John Seely Brown,et al.  Inference in text understanding , 2017 .

[52]  R. Goodstein FIRST-ORDER LOGIC , 1969 .

[53]  Peter B. Andrews General Models, Descriptions, and Choice in Type Theory , 1972, J. Symb. Log..

[54]  Christoph Benzmüller,et al.  System Description: LEO - A Higher-Order Theorem Prover , 1998, CADE.

[55]  Jonathan Cunningham Comprehension by model-building as a basis for an expert system , 1986 .

[56]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[57]  Hans de Nivelle,et al.  A Resolution Decision Procedure for the Guarded Fragment , 1998, CADE.

[58]  François Bry,et al.  A Deduction Method Complete for Refutation and Finite Satisfiability , 1998, JELIA.

[59]  B. Carpenter,et al.  Type-Logical Semantics , 1997 .

[60]  Gerald L. Thompson,et al.  A Computational Study of Satisfiability Algorithms for Propositional Logic , 1994, INFORMS J. Comput..

[61]  Christian G. Fermüller,et al.  Resolution Methods for the Decision Problem , 1993, Lecture Notes in Computer Science.

[62]  Leon Sterling Model Generation Theorem Provers and Their Applications , 1995 .

[63]  Wolfgang Nejdl,et al.  MOMO-model-based diagnosis for everybody , 1990, Sixth Conference on Artificial Intelligence for Applications.

[64]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[65]  Henk Zeevat,et al.  Presupposition and Accommodation in Update Semantics , 1992, J. Semant..

[66]  Peter Baumgartner,et al.  Tableaux for Diagnosis Applications , 1997, TABLEAUX.

[67]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[68]  M. Dalrymple,et al.  Reciprocal Expressions and the Concept of Reciprocity , 1998 .

[69]  J. Groenendijk,et al.  Coreference and modality , 1996 .

[70]  Ilkka Niemelä Implementing Circumscription Using a Tableau Method , 1996, ECAI.

[71]  Nicolas Peltier,et al.  Nouvelles techniques pour la construction de modèles finis ou infinis en déduction automatique. (New techniques for finite or infinite model building in automated deduction) , 1997 .

[72]  Hantao Zhang,et al.  SEM: a System for Enumerating Models , 1995, IJCAI.

[73]  Dag Westerståhl,et al.  Determiners and Context Sets , 1985 .

[74]  Sven Lorenz,et al.  A tableau prover for domain minimization , 1994, Journal of Automated Reasoning.

[75]  Peter Baumgartner,et al.  Hyper Tableaux , 1996, JELIA.

[76]  Slim Abdennadher,et al.  Model Generation with Existentially Quantified Variables and Constraints , 1997, ALP/HOA.

[78]  Peter Baumgartner,et al.  Abductive Coreference by Model Construction , 1999 .

[79]  A. J. W. Hilton The reconstruction of latin squares with applications to school timetabling and to experimental design , 1980 .