A Brief Survey of Stochastic Electrodynamics

Stochastic electrodynamics and random electrodynamics are the names given to a particular version of classical electrodynamics. This purely classical theory is Lorentz’s classical electron theory(1) into which one introduces random electromagnetic radiation (classical zero-point radiation) as the boundary condition giving the homogeneous solution of Maxwell’s equations. The theory contains one adjustable parameter setting the scale of the random radiation, and this parameter is chosen in terms of Planck’s constant,h = 2πℏ. Many of the researchers(2–70) working on stochastic electrodynamics hope that it will provide an accurate description of atomic physics and replace or explain quantum theory. At the very least the theory makes available new tools for calculating van der Waals forces, and it deepens our understanding of the connections between classical and quantum theories.(71)

[1]  L. Rosenfeld,et al.  Theory of electrons , 1951 .

[2]  A. M. Cetto,et al.  Stochastic theory for classical and quantum mechanical systems , 1975 .

[3]  T. Welton Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field , 1948 .

[4]  T. H. Boyer,et al.  Van der Waals forces and zero-point energy for dielectric and permeable materials , 1974 .

[5]  D. Mattis,et al.  The Theory of Magnetism I , 1981 .

[6]  T. H. Boyer,et al.  Specific heat of a classical, plane, rigid, dipole rotator in electromagnetic zero point radiation , 1970 .

[7]  T. H. Boyer,et al.  Retarded van der Waals Forces at All Distances Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation , 1973 .

[8]  T. H. Boyer,et al.  Temperature dependence of Van der Waals forces in classical electrodynamics with classical electromagnetic zero-point radiation , 1975 .

[9]  T. H. Boyer,et al.  Derivation of the Blackbody Radiation Spectrum without Quantum Assumptions , 1969 .

[10]  Ein Satz der Wahrscheinlichkeitsrechnung und seine Anwendung auf die Strahlungstheorie , 1915 .

[11]  A. M. Cetto,et al.  Derivation of quantum mechanics from stochastic electrodynamics , 1977 .

[12]  M. Surdin Electrodynamique stochastique et mécanique quantique , 1976 .

[13]  J. P. Malrieu,et al.  Localization and Delocalization in Quantum Chemistry , 1975 .

[14]  T. H. Boyer Recalculations of Long-Range van der Waals Potentials , 1969 .

[15]  Antwort auf eine Abhandlung M. v. Laues „Ein Satz der Wahrscheinlichkeitsrechnung und seine Anwendung auf die Strahlungstheorie”︁ , 1915 .

[16]  P. Braffort,et al.  Black-body Radiation Law deduced from Stochastic Electrodynamics , 1966, Nature.

[17]  S. M. Moore Stochastic physics and the Abraham-Lorentz equation , 1977 .

[18]  T. H. Boyer,et al.  Classical statistical thermodynamics and electromagnetic zero point radiation , 1969 .

[19]  O. Theimer DERIVATION OF THE BLACKBODY RADIATION SPECTRUM BY CLASSICAL STATISTICAL MECHANICS. , 1971 .

[20]  E. Santos Quantumlike formulation of stochastic problems , 1974 .

[21]  P. R. Peterson,et al.  Suppression of runaway effect in classical stochastic electrodynamics , 1975 .

[22]  M. Surdin The natural line-breadth in stochastic electrodynamics , 1974 .

[23]  Timothy H. Boyer,et al.  QUANTUM ELECTROMAGNETIC ZERO-POINT ENERGY OF A CONDUCTING SPHERICAL SHELL AND THE CASIMIR MODEL FOR A CHARGED PARTICLE. , 1968 .

[24]  T. H. Boyer,et al.  Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation , 1975 .

[25]  H. B. G. Casimir,et al.  Sur les forces Van der Waals-London , 1949 .

[26]  M. Surdin Derivation of Schrödinger's equation from stochastic electrodynamics , 1971 .

[27]  E. B. Wilson,et al.  The Theory of Electrons , 1911 .

[28]  M. J. Sparnaay Measurements of attractive forces between flat plates , 1958 .

[29]  T. H. Boyer,et al.  Statistical equilibrium of nonrelativistic multiply periodic classical systems and random classical electromagnetic radiation , 1978 .

[30]  F. London,et al.  Zur Theorie und Systematik der Molekularkräfte , 1930 .

[31]  T. H. Boyer,et al.  Some Aspects of Quantum Electromagnetic Zero-Point Energy and Retarded Dispersion Forces. , 1968 .

[32]  T. Marshall A classical treatment of blackbody radiation , 1965 .

[33]  A. M. Cetto,et al.  Stochastic electrodynamics as a foundation for quantum mechanics , 1976 .

[34]  Edward Nelson Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .

[35]  Albert Einstein,et al.  Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt [AdP 40, 551 (1913)] , 2005, Annalen der Physik.

[36]  E. Santos Classical interpretation of the uncertainty relations and the old quantum theory , 1972 .

[37]  A. M. Cetto,et al.  Quantum mechanics derived from stochastic electrodynamics , 1978 .

[38]  T. H. Boyer,et al.  Equilibrium of random classical electromagnetic radiation in the presence of a nonrelativistic nonlinear electric dipole oscillator , 1976 .

[39]  T. H. Boyer,et al.  General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems , 1975 .

[40]  T. H. Boyer Asymptotic Retarded van der Waals Forces Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation , 1972 .

[41]  J. V. Vleck,et al.  The theory of electric and magnetic susceptibilities , 1934, The Mathematical Gazette.

[42]  T. H. Boyer Unretarded London-van der Waals Forces Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation , 1972 .

[43]  Peter W. Milonni,et al.  Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory , 1976 .

[44]  A. M. Cetto,et al.  The quantum harmonic oscillator revisited: A new look from stochastic electrodynamics , 1979 .

[45]  E. Santos The harmonic oscillator in stochastic electrodynamics , 1974 .