A Brief Survey of Stochastic Electrodynamics
暂无分享,去创建一个
[1] L. Rosenfeld,et al. Theory of electrons , 1951 .
[2] A. M. Cetto,et al. Stochastic theory for classical and quantum mechanical systems , 1975 .
[3] T. Welton. Some Observable Effects of the Quantum-Mechanical Fluctuations of the Electromagnetic Field , 1948 .
[4] T. H. Boyer,et al. Van der Waals forces and zero-point energy for dielectric and permeable materials , 1974 .
[5] D. Mattis,et al. The Theory of Magnetism I , 1981 .
[6] T. H. Boyer,et al. Specific heat of a classical, plane, rigid, dipole rotator in electromagnetic zero point radiation , 1970 .
[7] T. H. Boyer,et al. Retarded van der Waals Forces at All Distances Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation , 1973 .
[8] T. H. Boyer,et al. Temperature dependence of Van der Waals forces in classical electrodynamics with classical electromagnetic zero-point radiation , 1975 .
[9] T. H. Boyer,et al. Derivation of the Blackbody Radiation Spectrum without Quantum Assumptions , 1969 .
[10] Ein Satz der Wahrscheinlichkeitsrechnung und seine Anwendung auf die Strahlungstheorie , 1915 .
[11] A. M. Cetto,et al. Derivation of quantum mechanics from stochastic electrodynamics , 1977 .
[12] M. Surdin. Electrodynamique stochastique et mécanique quantique , 1976 .
[13] J. P. Malrieu,et al. Localization and Delocalization in Quantum Chemistry , 1975 .
[14] T. H. Boyer. Recalculations of Long-Range van der Waals Potentials , 1969 .
[16] P. Braffort,et al. Black-body Radiation Law deduced from Stochastic Electrodynamics , 1966, Nature.
[17] S. M. Moore. Stochastic physics and the Abraham-Lorentz equation , 1977 .
[18] T. H. Boyer,et al. Classical statistical thermodynamics and electromagnetic zero point radiation , 1969 .
[19] O. Theimer. DERIVATION OF THE BLACKBODY RADIATION SPECTRUM BY CLASSICAL STATISTICAL MECHANICS. , 1971 .
[20] E. Santos. Quantumlike formulation of stochastic problems , 1974 .
[21] P. R. Peterson,et al. Suppression of runaway effect in classical stochastic electrodynamics , 1975 .
[22] M. Surdin. The natural line-breadth in stochastic electrodynamics , 1974 .
[23] Timothy H. Boyer,et al. QUANTUM ELECTROMAGNETIC ZERO-POINT ENERGY OF A CONDUCTING SPHERICAL SHELL AND THE CASIMIR MODEL FOR A CHARGED PARTICLE. , 1968 .
[24] T. H. Boyer,et al. Random electrodynamics: The theory of classical electrodynamics with classical electromagnetic zero-point radiation , 1975 .
[25] H. B. G. Casimir,et al. Sur les forces Van der Waals-London , 1949 .
[26] M. Surdin. Derivation of Schrödinger's equation from stochastic electrodynamics , 1971 .
[27] E. B. Wilson,et al. The Theory of Electrons , 1911 .
[28] M. J. Sparnaay. Measurements of attractive forces between flat plates , 1958 .
[29] T. H. Boyer,et al. Statistical equilibrium of nonrelativistic multiply periodic classical systems and random classical electromagnetic radiation , 1978 .
[30] F. London,et al. Zur Theorie und Systematik der Molekularkräfte , 1930 .
[31] T. H. Boyer,et al. Some Aspects of Quantum Electromagnetic Zero-Point Energy and Retarded Dispersion Forces. , 1968 .
[32] T. Marshall. A classical treatment of blackbody radiation , 1965 .
[33] A. M. Cetto,et al. Stochastic electrodynamics as a foundation for quantum mechanics , 1976 .
[34] Edward Nelson. Derivation of the Schrodinger equation from Newtonian mechanics , 1966 .
[35] Albert Einstein,et al. Einige Argumente für die Annahme einer molekularen Agitation beim absoluten Nullpunkt [AdP 40, 551 (1913)] , 2005, Annalen der Physik.
[36] E. Santos. Classical interpretation of the uncertainty relations and the old quantum theory , 1972 .
[37] A. M. Cetto,et al. Quantum mechanics derived from stochastic electrodynamics , 1978 .
[38] T. H. Boyer,et al. Equilibrium of random classical electromagnetic radiation in the presence of a nonrelativistic nonlinear electric dipole oscillator , 1976 .
[39] T. H. Boyer,et al. General connection between random electrodynamics and quantum electrodynamics for free electromagnetic fields and for dipole oscillator systems , 1975 .
[40] T. H. Boyer. Asymptotic Retarded van der Waals Forces Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation , 1972 .
[41] J. V. Vleck,et al. The theory of electric and magnetic susceptibilities , 1934, The Mathematical Gazette.
[42] T. H. Boyer. Unretarded London-van der Waals Forces Derived from Classical Electrodynamics with Classical Electromagnetic Zero-Point Radiation , 1972 .
[43] Peter W. Milonni,et al. Semiclassical and quantum-electrodynamical approaches in nonrelativistic radiation theory , 1976 .
[44] A. M. Cetto,et al. The quantum harmonic oscillator revisited: A new look from stochastic electrodynamics , 1979 .
[45] E. Santos. The harmonic oscillator in stochastic electrodynamics , 1974 .